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incohérent de lumière polarisée
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Personnalité invitée :

M. Alan Parker Ingénieur de recherche, Firmenich S.A., Suisse
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suite à la mort de Charles le Téméraire en 1477 pendant La bataille de Nancy.
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cherche à cerner la vérité par approximations successives.”
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Résumé

Dans le cadre de cette thèse, nous nous intéressons au problème général de la carac-

térisation des dispersions concentrées. Nous développons une technique optique de diffu-

sion basée sur le transport incohérent de lumière polarisée. Nous proposons un dispositif

expérimental permettant l’acquisition de la matrice Mueller (Matrice 4x4 2D) représen-

tant l’ensemble des interactions entre la lumière et un milieu diffusant. Le dispositif est

constitué d’une source laser focalisée à la surface de l’échantillon et d’une caméra CCD

permettant l’acquisition des images rétrodiffusées. Des lames à cristaux liquides sont uti-

lisées pour sélectionner rapidement différents états de polarisation en entrée (source) et

en sortie (acquisition). Parallèlement nous construisions puis analysons une base de don-

nées de simulations de Monte Carlo basée sur la théorie de Mie. Par confrontation des

données expérimentales et numériques nous déterminons la taille moyenne des particules

en suspension indépendamment de leur concentration. Le principe de mesure est validé

sur des émulsions d’huile dans de l’eau puis appliqué à une étude d’un mécanisme de

coacervation. Avec l’hypothèse que les propriétés optiques sont connues, nous effectuons

une mesure simultanée et in situ de la taille des particules et de leur concentration. Une

seconde partie de la thèse utilisera le transport anisotrope de lumière pour l’étude de sus-

pensions biréfringentes ou anisotropes (Argile, bâtonnets de verre, suspensions sanguines)

sous écoulement cisaillé. Pour chaque système, nous déterminons un axe d’orientation ou

de déformation et nous quantifions l’anisotropie du système. Nous montrons donc que le

transport stationnaire incohérent de lumière polarisée en milieu turbide est un outil per-

mettant de caractériser des dispersions de nature variée en terme de taille, de concentration

et d’orientation moyenne des objets dispersés sous écoulement.

Mots clés
Diffusion de la lumière, Transport incohérent, Suspensions concentrées, Emulsions, Sus-

pensions anisotropes, Rhéologie
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Abstract

In this thesis, we are interested in the general problem of characterizing concentrated

dispersions. We develop an optical diffusing method which uses the incoherent polarized

light transport. We propose an experimental setup to acquire the Mueller matrix (Ma-

trix 4x4 2D). This matrix, composed by 16 images, represents all interactions between an

electromagnetic wave and a diffusing medium. The experimental device is composed of a

focused laser diode and a CCD camera to acquire the backscattered images. Four liquid

crystal retarders are used to select quickly the appropriate polarization states of light that

enter and leave the medium. To analyse polarisation effects, we develop a Monte Carlo

simulation database using Mie theory. We show that knowing refractive indexes, Mueller

matrices can be used to determine simultaneously and in situ an average particle size and

particle volume fraction in dense turbid media. The measurement method is validated

with oil in water emulsions and is used to study dynamically a complex coacervation me-

chanism. In the second part of the thesis, the anisotropic light transport is used to study

the birefringence of turbid media or anisotropic suspensions. We measure dynamically the

shear-induced global orientation in a clay suspension, a glass cylinders suspension and red

blood cells suspensions. So, the static incoherent polarized light transport is a powerful

method to characterize under flow various turbid medium in terms of particle size, concen-

tration and objects orientation.

Keywords
Light diffusion, Stationary, Stationary incoherent scattering, Concentrated suspensions,

Emulsions, Anisotropic suspensions, Rheology

6



Table des matières

Remerciements 1
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9.1 Système étudié . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

9.1.1 La coacervation complexe . . . . . . . . . . . . . . . . . . . . . . . . 155

9.1.2 La gomme arabique . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

9.1.3 La β−lactoglobuline . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

9.1.4 Le Glucono-δ-lactone . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

9.1.5 Systèmes concentrés . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
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10 Biréfringence d’écoulement en milieu turbide 173
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Nomenclature

a Rayon d’une particule sphérique m

a (θ), b (θ), d (θ), e (θ) Coefficients de la matrice de Mueller d’une sphère

a [4, 3] Rayon moyen en volume (MastersizerX Malvern) m

A2 Paramètres d’anisotropie

~B Champ magnétique T

Br Bruit de la camera Bits

d, r Distance parcourue dans le milieu m

c Célérité de la lumière m.s−1

Cscat Section efficace de dispersion m2

e Épaisseur du milieu m

~E Champ électrique V

Fl Flux diffusif m−2

g Facteur d’anisotropie optique

I Intensité lumineuse m−2

Ji Coefficient de la matrice de Jones pour une particule

k, ~k Nombre et vecteur d’onde m−1

kB Constante de Boltzmann J/K

la Longueur d’absorption m

ldec Longueur de décorélation m

ls Longueur de dispersion m

lTR Longueur de transport m

L (θ) Matrice d’un polariseur linéaire

m Paramètre optique

M Matrice de Mueller

Mij Coefficient de la matrice de Mueller

Nm Indice de réfraction du milieu

Np Indice de réfraction des particules

P (θ) Fonction de phase
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P2 Paramètre d’ordre de SAXS

Pe Nombre de Peclet

Pl Paramètre d’anisotropie obtenue par ajustement de sinus

Pscat (θ, φ, Si) Probabilité de dispersion dans une direction (θ, φ)

q Vecteur d’onde m−1

R (ϕ) Matrice de rotation

Re Nombre de Reynolds

Rlaser Rayon du spot laser m

~s Direction de propagation d’une OEM

S Vecteur de Stokes

Si Vecteur de Stokes incident

Ss Vecteur de Stokes de sortie

Si Coefficient du vecteur de Stokes

T (θ, δ) Matrice d’un milieu biréfringent

x Paramètre de taille

δ Amplitude de biréfringence

φ Angle azimutale de dispersion

ϕv Fraction volumique

ϕf Fraction effective

ϕp Fraction de Packing

γ̇ Vitesse de cisaillement m.s−1

λ Longueur d’onde de la lumière m

µ Viscosité dynamique Pa.s

µs Viscosité dynamique de la phase suspendante Pa.s

θ Angle de dispersion

ρ Distance par rapport au centre de la tache de diffusion m

σ Contrainte de Cisaillement Pa

τu Turbidité m−1

τ Temps de décorélation s

τT Temps de transition s
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Introduction générale

Les travaux exposés dans cette thèse s’inscrivent dans la cadre de la caractérisation

des dispersions concentrées. Une dispersion est un mélange d’une substance dispersée dans

une autre substance. L’interface entre les deux substances ”supendue” et ”suspendante”

est d’une grande diversité, elle peut-être solide-gaz (poudre), solide-liquide (suspension),

liquide-liquide (émulsion ou suspension) ou encore gaz-liquide (mousse). Nombre de ces

dispersions concentrées sont utilisées dans le domaine industriel. Le secteur du bâtiment

est un premier secteur où les dispersions sont très largement présentes. Nous pouvons ci-

ter : les sables, les ciments, les enduits, les peintures, les papiers, les argiles, les mousses,

les bitumes, les aérosols, les plastiques, les fibres de renfort, . . . . Des suspensions sont

également présentes dans le domaine des cosmétiques. Nous les retrouvons dans les crèmes

hydratantes, les crèmes solaires, les savons, les lotions, les mousses à raser, les adoucissants

de lavage, . . . . Dans le secteur de l’agro-alimentaire, les émulsions sont très courantes :

la mayonnaise, le beurre, la crème, le fromage, les sauces, les boissons, les capsules aro-

matiques, . . . . Nous trouvons également des dispersions dans les domaines du biomédical,

de la pharmacie, de la chimie, du textile, de l’industrie pétrolière et dans bien d’autres

applications encore.
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La caractérisation microscopique des dispersions réside principalement sur la spécifi-

cation de la taille des objets suspendus, de leur concentration, de leur morphologie, de

leur stabilité et de leurs interactions. La difficulté d’analyse des dispersions concentrées

demeure dans le fait que nombre de ces systèmes sont opaques à la lumière visible. Bien

souvent, une épaisseur de quelques millimètres est suffisante pour ne plus voir à travers ces

milieux dits turbides. Ces suspensions sont constituées d’objets de taille allant de quelques

dizaines de nanomètres à quelques micromètres, soit de l’ordre de grandeur que la longueur

d’onde de la lumière visible (300 − 700 nm). Une onde lumineuse se propageant dans de

tels systèmes est rapidement dispersée, elle perd ainsi l’information sur sa direction ini-

tiale de propagation. Par conséquent, en microscopie seules des informations de surface

peuvent être récupérées. Ces données superficielles ne sont pas toujours représentatives

des caractéristiques internes des échantillons.

La connaissance des propriétés microscopiques est indispensable pour com-

prendre et optimiser le comportement macroscopique des suspensions. La fa-

brication, le transport, le conditionnement, le vieillissement et l’utilisation d’un

produit sont directement liés à ses caractéristiques microscopiques. Il est donc

important d’identifier la taille, la concentration et la morphologie des éléments

dispersés, si possible de façon non-intrusive. Pour répondre à ce besoin, il est

souhaitable de développer une technique de mesure polyvalente à faible coût,

peu encombrante, rapide, non-intrusive et utilisable sur des échantillons sta-

tiques ou sous écoulement (contrôle en ligne). Cette technique doit permettre

un suivit direct et en continu des dispersions en évolution. Elle devra être

utilisée pour des écoulements réels (en conduite) et permettre un suivi dyna-

mique de la micro-structure dans les zones proches des parois, afin de caracté-

riser la relation contrainte/structure/comportement rhéologique/modification

de l’écoulement.

La diffusion est extrêmement efficace dans les milieux turbides. La lumière se propa-

geant dans de tels milieux subit de multiples événements de dispersions. Nous parlons alors

de lumière incohérente. De nombreuses équipes de recherche ont cherché à s’abstraire de la

diffusion multiple, pensant que toutes les informations étaient perdues après de nombreux

événements de dispersion. Ils ont donc étudié l’approximation de dispersion unique de la

lumière sur une seule particule (lumière cohérente). Trois solutions permettent néanmoins

l’étude des suspensions turbides en lumière cohérente. La première solution consiste à

diluer très fortement la suspension pour la rendre transparente (Small Angle Light Scat-

tering). La lumière traversant la solution ne subira ainsi en moyenne qu’un événement de
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dispersion. Cette technique présente l’inconvénient de ne pas être in situ. La seconde solu-

tion porte sur une analyse dynamique des photons cohérents (Dynamic Light Scattering).

Cette étude nécessite des échantillons quasi statiques. La troisième et dernière solution est

de rendre les milieux transparents en diminuant fortement la longueur d’onde d’observa-

tion. Les techniques de diffusion de rayonsX (Small Angle X-ray Scattering) ou de neutrons

(Small Angle Neutron Scattering) répondent à ce critère. Ces dernières techniques sont très

onéreuses, surtout si l’on désire un temps d’acquisition court pour une analyse dynamique.

Nous apporterons dans cette thèse une autre approche optique de caractérisation des

milieux aléatoires turbides basée sur le transport de lumière incohérente. Nous étudie-

rons comment l’énergie et la polarisation des photons sont dispersées dans l’espace par les

événements de dispersion successifs. Nous utiliserons donc le transport stationnaire inco-

hérent de lumière polarisée rétrodiffusée pour rechercher des informations sur la structure

microscopique des suspensions. Cette technique fut introduite par les atmosphériques et

les astrophysiciens pour l’étude des atmosphères ou des nuages cosmiques pour lesquels la

seule source lumineuse utilisable est alors la lumière non-polarisée du soleil ou d’une étoile.

La diffusion de la lumière dans de tels milieux aléatoires dépend essentiellement de la taille

des particules, de leur concentration et des indices optiques de réfraction particule-milieu.

La thèse de Julien Mougel (Mougel, 2006) utilise le transport incohérent de lumière non-

polarisée pour mesurer un paramètre (la taille) connaissant les deux autres (la concen-

tration est les indices de réfraction). Dans ce mémoire, nous exposons une extension de

cette étude en considérant également le transport de lumière polarisée pour mesurer deux

paramètres (la taille et la concentration) connaissant le troisième (les indices de réfraction).

Le principe de notre technique consiste à focaliser un faisceau laser continu à la surface

d’un échantillon. La lumière se propage alors dans un volume important de l’échantillon en

subissant de nombreuses dispersions successives. Puis la lumière sortante de l’échantillon

dans la direction opposée à la source incidente (rétrodiffusion) est collectée par une caméra.

Nous apporterons les éléments théoriques utiles à l’analyse de la propagation de lumière

polarisée. De plus nous construirons un dispositif expérimental polyvalent répondant aux

critères souhaités.

Le mémoire de thèse sera organisé en trois parties. La partie préliminaire position-

nera les travaux effectués par un point bibliographique sur les techniques existantes de

caractérisation des suspensions. L’objectif de cette partie est de montrer la pertinence du

développement de la technique du transport de polarisation de lumière. Nous ferons un

inventaire des techniques utilisables pour mesurer une taille, une concentration ou une
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anisotropie dans des suspensions de nature variée. Le premier chapitre ciblera les suspen-

sions diluées. Le second chapitre sera plus proche de nos préoccupations et concernera les

milieux denses.

La partie suivante présentera la théorie et la validation de la technique optique de

caractérisation de suspensions. Nous montrerons dans cette partie, que le transport inco-

hérent de lumière polarisée en milieu isotrope permet de mesurer une taille moyenne et une

concentration dans un milieu turbide. Nous modéliserons le transport de lumière par des

simulations de Monte Carlo et nous apporterons une description détaillée du dispositif ex-

périmental. Nous validerons la technique de granulo-polarisation par des expérimentations

sur des émulsions d’huile dans de l’eau et nous l’appliquerons à la coacervation complexe.

Nous terminerons par une partie plus expérimentale afin d’illustrer le potentiel de la

technique pour la caractérisation de milieux anisotropes. Le premier chapitre illustrera

une mesure de biréfringence en milieu opaque. Puis nous comparerons la mesure d’ani-

sotropie sur une suspension d’argile à des mesures de Small Angle X-ray Scattering 2D

sous écoulement cisaillé. Ensuite nous appliquerons la technique à la caractérisation d’une

suspension de bâtonnets de verre. Le mémoire sera conclu par une dernière application sur

l’étude de l’agrégation et de la déformation de suspensions de globules rouges en conditions

physiologiques.
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Partie I

Bibliographie sur la caractérisation

des suspensions

Nous choisissons de débuter ce mémoire par une étude bibliographique sur la caracté-

risation des suspensions. La caractérisation des suspensions utilise de nombreux domaines

de la physique (optique, mécanique, électricité, acoustique et rhéologie). Nous réaliserons

ici un inventaire non exhaustif de différentes méthodes. Les références bibliographiques

propres au transport incohérent de lumière polarisée seront introduites de manière diffuse

dans la suite du mémoire.

Pour chacune des techniques de caractérisation, nous introduirons le phénomène phy-

sique mis en jeu. Nous indiquerons leurs possibilités et leur domaine d’utilisation ainsi

que leurs avantages et leurs inconvénients. Nous classons ces techniques en fonction de la

concentration des suspensions ; de la plus faible à la plus importante. Nous découperons

ainsi l’inventaire en deux classes, celles applicables aux milieux dilués (Chap.1) et celles

utilisables dans en régime concentré (Chap.2).
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Chapitre 1

Suspensions diluées

Nous débutons la bibliographie sur la caractérisation des suspensions en effectuant un

premier inventaire des techniques utilisables en milieux dilués. Nous considérons un milieu

comme diluée si sa concentration volumique en particules est typiquement inférieure à 10%.

Les techniques présentées dans ce chapitre apportent principalement une mesure d’une

taille moyenne ou d’une distribution de taille des particules.

On distingue essentiellement deux techniques optiques spécifiques aux très faibles

concentrations (très inférieures à 1%). Elles se basent sur une interaction unique entre

un faisceau lumineux et un objet diffusant. Il s’agit de la technique de diffusion aux petits

angles (SALS) et de la dispersion statique de lumière (SLS).

Quatre autres techniques sont utilisables en milieu dilué (inférieures à 10%). La tech-

nique la plus directe est la microscopie qui est une méthode de visualisation des particules.

Les techniques de comptage Coulter et la technique de sédimentométrie permettent de dé-

terminer indirectement, par respectivement un signal électrique et une mesure de turbidité,

des informations sur les particules. La dernière technique et une technique optique de dis-

persion dynamique de lumière (DLS).

1.1 Diffusion de lumière aux petits angles SALS

La technique de ”Small Angle Light Scattering” (SALS) appartient aux techniques de

diffusion aux petits angles ”Small angle scattering” (SAS) tout comme les techniques de

”Small Angle Neutron Scattering” (SANS) et ”Small Angle X-ray Scattering” (SAXS) qui

seront détaillées dans le prochain chapitre. En SALS, un faisceau lumineux incident de
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Chapitre 1. Suspensions diluées

longueur d’onde comprise entre 300 nm et 800 nm est envoyé dans l’échantillon analysé.

Chaque photon interagit avec une seule particule en approximation de dispersion unique.

L’image de dispersion obtenue est alors porteuse d’information sur la taille de la particule

et sur sa morphologie. La technique s’applique aux milieux quasi transparents. Elle est

utilisée sur des suspensions très diluées dont la concentration volumique est très inférieure

à 1%.

Nous trouvons sur le marché différents instruments de mesures. Les plus connus sont

fabriqués par la société Malvern (http ://www.malvern.co.uk/ ). L’échantillon liquide passe

dans une cellule transparente traversée par un faisceau laser. En raison de la très faible

concentration, les particules passent une à une dans le faisceau laser. Des photodétecteurs,

placés en arc de cercle derrière la cellule avec des incidences (θ), mesurent les intensités

lumineuses dispersées par la particule. Ces intensités forment une fonction de dispersion

p (θ) de la particule. Cette fonction, comparée à la théorie de Mie, permet de déduire une

taille. Nous apporterons une description de la fonction de phase p (θ) et de la théorie de

Mie dans la seconde partie de cette thèse. Des milliers d’acquisitions sont effectuées pour

obtenir une bonne reproductibilité sur la mesure moyenne de la taille et de la distribution

granulomètrique. Dans cette thèse, nous utiliserons des mesures de granulométrie obtenues

sur un Malvern MastersizerX pour caractériser certaines émulsions.

La technique permet de mesurer des distributions de tailles entre 100 nm et quelques

micromètres dans des échantillons sous écoulement et extrêmement dilués.

1.2 Dispersion statique de la lumière SLS, Turbidité

La mesure de turbidité et la technique de ”Static Light Scattering” (SLS) sont des

techniques optiques. L’échantillon est positionné dans une cellule d’épaisseur connue puis

est éclairé par une lumière monochromatique. Chaque photon de la lumière incidente n’in-

teragit qu’avec une seule particule comme le montre la Fig.1.1.

La turbidité d’un milieu correspond au ratio entre l’intensité lumineuse rétrodiffusée

et l’intensité incidente. Typiquement nous considérons un milieu turbide si nous ne voyons

plus à travers une épaisseur de milieu de 1 cm.

La mesure de turbidité consiste à positionner un photo-détecteur à une incidence de

90◦ ou 180◦ et de mesurer l’intensité transmise IT . La turbidité τ est définie à partir de

la loi de Beer-Lambert, IT = I0 − ID = I0 exp(−τux) où τu (m−1) est la turbidité, x est
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1.2 Dispersion statique de la lumière SLS, Turbidité

la longueur du trajet optique (épaisseur de l’échantillon) (m), I0 est l’intensité lumineuse

incidente, IT est l’intensité lumineuse transmise et ID est l’intensité lumineuse diffusée

dans tout l’espace. La turbidité τu est une fonction du nombre de particules par unité de

volume, du diamètre moyen et de la distribution granulométrique en objets diffusants, des

indices de réfraction et de la longueur d’onde utilisée.

La turbidité augmente comme le produit du nombre de particules par le volume moyen

des particules. En connaissant l’ensemble des indices optiques et en supposant une distri-

bution granulométrique de la forme log-normale puis en mesurant les turbidités à trois

longueurs d’onde différentes, il est possible d’évaluer le diamètre moyen et la déviation

standard de la suspension.

(Voir comme exemple (Brochette, 1999) et http ://www.gls.fr/memotec26.htm).

Fig. 1.1 Principe de la mesure de turbidité et de Static Light Scattering

En technique de SLS, l’intensité transmise à une longueur d’onde donnée est mesurée

tout autour de l’échantillon. Elle est souvent utilisée pour la caractérisation des poly-

mères. La comparaison de la distribution angulaire d’intensité transmise du solvant et du

mélange solvant-polymère permet d’obtenir une mesure de la masse moléculaire moyenne

et du rayon de giration moyen du polymère.

Les deux techniques peuvent s’appliquer sur des échantillons statiques ou sous écoule-

ment. Il est possible de mesurer des tailles entre 10 nm et 1 µm pour des concentrations

volumiques petites. Plus la concentration est grande, plus l’épaisseur de l’échantillon devra

être faible pour éviter la diffusion multiple.
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Chapitre 1. Suspensions diluées

1.3 Dispersion dynamique de la lumière : DLS

La technique de ”Dynamic Light Scattering” (DLS) a pour objet l’étude des fluctua-

tions temporelles d’intensité (speckles) qui sont liées aux mouvements brownien des par-

ticules dans l’échantillon liquide. La suspension diluée est positionnée dans une petite

cuve d’épaisseur très fine et de dimensions perpendiculaires grandes (considérées infinies).

Elle est traversée par un faisceau parallèle continu de lumière cohérente. Les photons en-

trant dans le milieu subissent en moyenne une seule interaction avec les particules de la

suspension. En sortie du milieu, ils interfèrent provoquant des interférences constructives

observables sous forme de pics d’intensité. Nous parlons alors de transport cohérent de lu-

mière. Le mouvement brownien des particules provoque une modification permanente des

interférences constructives et destructives : on parle de fluctuations temporelles nommées

speckles. Un photomultiplicateur placé avec un angle θ récupère ces fluctuations d’intensité

Fig.1.2. Voir par exemple le site web http ://www.wyatt.com/theory/index.cfm et l’article

(Bandyopadhyay et al., 2005).

Fig. 1.2 Schéma de principe d’un granulomètre utilisant la Diffusion Dynamique de la Lumière,

Une fonction d’autocorrélation est alors mesurée en fonction du temps. La fonction

d’autocorélation décrôıt exponentiellement avec un temps caractéristique τ0. Ce temps de

décroissance est relié directement au coefficient de diffusion Brownien D = kBT/6πηa des

particules ; kB est la constante de Boltzmann, T (K) la température, η (Pa.s) la visco-

sité du fluide suspendant qui doit être connue et a (m) le rayon moyen des particules.

La technique permet la mesure d’une taille moyenne de quelques nanomètres à plusieurs

micromètres. Elle est réalisée sur un échantillon statique. L’autocorrelateur nécessite un

investissement conséquent ; il doit réaliser des mesures sur plusieurs décades de temps, de

la nanoseconce à la seconde typiquement.
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1.4 Microscopie

1.4 Microscopie

La microscopie optique est une technique très utile pour l’étude des suspensions. Un

microscope assez puissant permet de visualiser des particules de taille supérieure au mi-

cromètre. Le contraste n’est pas toujours suffisant pour une bonne observation. C’est

notamment le cas pour une émulsion où les indices de réfraction de l’eau (Np = 1, 33) et

de la phase huileuse (Np ≈ 1, 45) ne sont pas très différents.

En complément du système classique à contraste de phase, différents systèmes op-

tiques permettent d’obtenir des images très précises et riches d’information. Le mon-

tage de Nomarsky à contraste interférentiel différentiel permet d’obtenir une image don-

nant une impression de relief, qui permet une bonne visualisation des particules. Le

montage à polariseurs croisés permet de visualiser la présence de mésophases (phases

lamellaires, phases hexagonales) et d’en identifier la nature (http ://www.microscopy-

uk.org.uk/intro/illu/dic.html). Par ailleurs, de nombreux microscopes sont équipés de sys-

tèmes d’acquisition et d’amélioration d’images (Voir par exemple (Brochette, 1999)).

Des précautions expérimentales sont nécessaires à la préparation des échantillons ob-

servés. Il convient de réaliser une préparation en déposant une goutte de l’échantillon sur

une lame de verre. Cette goutte est ensuite recouverte d’une lamelle. Le volume déposé

doit être faible pour obtenir une préparation mince. L’observation est réalisée dans le plan

focal de l’instrument qui est généralement la surface de contact avec la plaque de verre.

Il faut être attentif à la sédimentation des gouttelettes et l’attraction des gouttes d’eau

provoquée par l’affinité verre-eau. Pour empêcher ce mouillage préférentiel, il est préférable

de rendre les lames de verre hydrophobes. Les particules situées au-dessous et au-dessus

du plan focal projettent des figures de diffraction pouvant perturber la visualisation.

La microscopie couplée à des traitements automatisés d’image est néanmoins une tech-

nique complète d’analyse. Il est possible de déterminer à la fois la taille moyenne, la

distribution granulométrique, la morphologie et une concentration surfacique des parti-

cules.

En résumé, la microscopie est une technique intéressante d’observation directe de sur-

face. Elle est délicate dans sa mise en oeuvre ainsi que dans son exploitation. Elle ne s’ap-

plique que pour des suspensions micrométriques. Différentes observations réalisées avec le

microscope présent au Lemta (objectif sec x20 et x100) seront présentées dans ce mémoire.

La Fig.1.3 est un exemple d’observation de bâtonnets de verre de 6µm de diamètre et de

18, 3µm de longueur.
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Chapitre 1. Suspensions diluées

Fig. 1.3 Observation microscopique de bâtonnets de verre

1.5 Sédimentométrie

La sédimentométrie est une méthode simple, qui permet d’effectuer un découplage

entre le nombre et la taille des particules. Le principe de cette technique repose sur la loi

de sédimentation Eq.1.1 obtenue pour un équilibre entre les deux forces : le poids et la

résistance visqueuse en écoulement de Stokes. Les variables sont vs (m.s−1) la vitesse de

sédimentation, ma (kg) la masse de la particule µs (Pa.s) la viscosité de la phase conti-

nue, a (m) le rayon de la particule, ga (ga = 9, 81 m.s−2) l’accélération de la pesanteur et

∆ρ (kg.m3) la différence de masse volumique entre la particule et le milieu suspendant.

Cette équation est le résultat théorique de la sédimentation d’une particule isolée dans

un récipient infini. Elle introduit donc des hypothèses très simplificatrices dont l’absence

d’interaction et de contact des particules entre elles et avec les parois du récipient.

vs =
maga

6πµsa
=

2

9

∆ρgaa
2

µs
(1.1)

Cette loi permet de déterminer quelles tailles de particules ont sédimentée au bout du

temps t. Une mesure de turbidité de la population non sédimentée renseigne alors sur le

nombre de particules perdues par sédimentation. Des appareils utilisent un système de

centrifugation pour accélérer la sédimentation. Cette mesure est réalisable uniquement sur

des particules supérieures au micromètre (mouvement brownien négligeable) et de masse

volumique importante comparée à celle du fluide suspendant. La technique est laborieuse,
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elle n’est pas instantanée. L’échantillon prélevé doit être positionné dans le récipient de

mesure.

1.6 Comptage individuel : Coulter

La technique Coulter est basée sur la variation de résistance provoquée par les par-

ticules placées dans un champ électrique (Voir pour exemple (Melcion, 2000)). Le fluide

suspendant est alors un électrolyte. La résistance est mesurée entre deux électrodes placées

de part et d’autre d’un orifice calibré à travers lequel les particules sont déplacées Fig.1.4.

A chaque fois qu’une particule traverse l’orifice, elle déplace son propre volume d’élec-

trolyte. Elle génère un signal électrique proportionnel au volume de liquide déplacé. La

particule est donc comptée et son volume mesuré. L’unité de traitement des données pro-

duit ensuite une distribution granulomètrique en diamètre pondérée en volume. La plage

de mesure s’étale de 1µm jusqu’à un millimètre. Un étalonnage de l’appareil est nécessaire

à chaque changement d’orifice ou d’électrolyte. Le fluide suspendant est généralement de

l’eau et l’électrolyte du chlorure de sodium (1%).

Fig. 1.4 Principe du compteur à variation de résistance
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Chapitre 1. Suspensions diluées

Tout comme la microscopie, la technique Coulter nécessite une préparation de l’échan-

tillon. Nous avons besoin de diluer l’échantillon dans un électrolyte. La technique mesure

des tailles micrométriques dans un échantillon de faible concentration.

1.7 Conclusion

Les techniques de caractérisation en milieu dilué sont principalement des techniques de

mesure de taille. Seule la microscopie permet d’obtenir des informations supplémentaires

(Concentration de surface et morphologie des particules). La technique de comptage indi-

viduel est l’unique technique non optique de cet inventaire.

Ces techniques peuvent permettre l’étude des suspensions concentrées mais nécessitent

obligatoirement une dilution préliminaire importante dans la plupart des applications. Des

problèmes de stabilité peuvent alors apparâıtre. Il faut donc redoubler de prudence pour

déterminer les propriétés physiques d’un milieu quand celui ci vient d’être modifié par

dilution.
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Chapitre 2

Suspensions Concentrées

Notre motivation porte sur la caractérisation des suspensions concentrées. Nous consi-

dérons un milieu concentré pour une fraction volumique supérieure à 10%. Nous allons

donc réaliser dans ce chapitre, un inventaire de techniques de mesure (taille, concentra-

tion, morphologie) sur ce type de système. Nous avons répertorié six techniques utilisables

pour mesurer une concentration et (ou) déterminer une taille (ou une distribution granu-

lométrique) et (ou) mesurer une anisotropie de particule.

Nous aborderons dans un premier temps une détermination de la fraction volumique

par mesure de la viscosité de la suspension. Ensuite nous montrerons que les techniques

de DTS, DWS, cône cohérent de lumière, SAXS, SANS et ultrasonore permettent une

mesure de la taille des particules. Les techniques de SAXS et SANS présentent également

l’avantage de recueillir une information sur l’anisotropie des particules ainsi que sur leur

concentration.

2.1 Modélisation Viscosité - fraction volumique

La viscosité est une propriété macroscopique des fluides. Einstein fut le premier à

calculer théoriquement la viscosité µ (Pa.s) d’une suspension diluée de sphères dures en

fonction de la concentration volumique ϕv en objets : µ = µs (1 + 2, 5ϕv), où µs (Pa.s)

est la viscosité du fluide suspendant. La viscosité augmente linéairement avec ϕv . En effet,

si la fraction en volume est suffisamment faible, les particules n’interagissent pas entre

elles et l’effet global est simplement la somme des effets dissipatifs dus à une particule

unique. La variation de viscosité est donc proportionnelle au nombre de particules solides

par unité de volume. Les expériences montrent que la formule d’Einstein n’est valide que
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Chapitre 2. Suspensions Concentrées

si ϕv est inférieure 2% environ. Au-delà, il faut introduire un terme du second ordre. Cette

correction calculée par Batchelor (Batchelor, 1977) est : µ = µs

(

1 + 2, 5ϕv + 6, 2ϕ2
v

)

pour

ϕv < 10%. Ces deux relations ne sont fonction que de la seule fraction volumique des

particules.

Krieger (Krieger, 1977) développe une corrélation empirique entre la viscosité et la frac-

tion volumique en fonction de l’écoulement caractérisé avec le nombre de Peclet Pe. La vis-

cosité µ d’une suspension est alors donnée par la relation µ = µs (1 − ϕv/ϕp (Pe))−2,5ϕp(Pe)

où ϕp est la fraction de d’empilement maximum. En réalisant une analyse dimensionnelle

des forces sur une sphère en écoulement de Stokes (Re << 1), nous obtenons le nombre de

Peclet Pe = µsγ̇a
3/kBT correspondant au rapport de la force hydrodynamique de Stokes

avec la force associée au mouvement Brownien des particules avec a (m) : le rayon de la

particule, γ̇
(

s−1
)

: le cisaillement, kB = 1, 38.10−23JK−1 : la constante de Boltzmann et

T (K) la température absolue. La fraction d’empilement ϕp vaut 0, 72 pour un empilement

aléatoire compact (Pe→ ∞) et 0, 63 pour un empilement aléatoire (Pe→ 0).

Une autre approche théorique (Quemada, 1977) consiste à substituer la fraction volu-

mique ϕv par une fraction volumique effective ϕf : µ = µs (1 − ϕf/ϕp)
−2. Cette approche

permet de prendre en considération le fluide autour de la particule qui se déplace simul-

tanément avec la particule. La formule devient ainsi valide pour des objets anisotropes ou

des agrégats.

En résumé, la viscosité d’un fluide est une fonction de la concentration en particules.

Nous pouvons donc utiliser l’inversion de la modélisation viscosité-fraction volumique pour

déterminer une concentration à partir d’une mesure viscosimètrique. La déduction d’une

concentration nécessite un fluide de viscosité µs connue. La technique n’est pas seulement

utilisable pour les suspensions, elle s’adapte aussi à une mesure du volume hydrodynamique

de la phase suspendente (structures micellaires).

En exemple de validation, je présente sur la Fig.2.1 les résultats obtenus lors de mon

projet de recherche réalisé pendant mon année de DESS (Dillet, 2003). Dans cet exemple

nous avons étudié des billes d’acryperl de 300 µm de diamètre en solution dans un mé-

lange eau-glycérol. Le mélange suspendant à été ajusté pour obtenir une isodensité avec

les particules afin de supprimer leur sédimentation. Différentes géométries de mesure (2

géométries couette de 75 mm de hauteur avec un cylindre extérieur de 48 mm de dia-

mètre et des cylindres intérieurs de 40 mm de diamètre pour le Couette1 et de 44 mm de

diamètre pour le Couette2) ont été utilisées pour valider expérimentalement la technique.
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2.1 Modélisation Viscosité - fraction volumique

Fig. 2.1 Validation de la modélisation viscosité relative - fraction volumique sur des particules

de 300 µm de diamètre suspendues dans une solution newtonienne de glycérol et d’eau

avec ϕp = 0.63

Les mesures expérimentales de viscosité obtenues sont en très bon accord avec le modèle

de Quemada (ϕp = 0.63). En réalisant l’hypothèse que nous connaissons la viscosité du

fluide suspendant, nous pouvons envisager une mesure indirecte de la fraction volumique

à partir de la mesure de viscosité.

Cette technique est également utilisée pour caractériser la le rayon hydrodynamique

des polymères. Connaissant la concentration en polymère d’une solution, une mesure de

viscosité permet de mesurer un rayon de giration moyen, (De-Gennes, 1979).

La technique est valide dans le domaine de concentrations [0 60%]. L’inversion en frac-

tion volumique nécessite la connaissance de la viscosité de la phase continue. La mesure

de viscosité est réalisable en ligne en instrumentant une conduite avec un débitmètre et

un manomètre différentiel.
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2.2 Turbidité DTS

La technique de DTS (Diffusive Transmission Spectroscopy) (Rojas-Ochoa et al., 2002)

(Kaplan et al., 1994) porte sur une mesure de l’intensité diffusée par un ensemble de parti-

cules. L’onde lumineuse continue subit des dispersions multiples avant de quitter le milieu

en transmission. L’intensité mesurée est reliée à une grandeur caractéristique de diffusion

lTR (m), le libre parcours moyen de diffusion. Cette grandeur correspond à l’inverse de

la turbidité (lTR ∝ 1/τu), elle sera décrite précisément dans la suite de ce mémoire. Elle

dépend de la taille des suspensions présentes ; elle peut être comparée à des valeurs théo-

riques obtenues par résolution des équations de transfert radiatif basées sur la théorie de

Mie.

La technique de DTS utilise une solution de référence caractérisée par une longueur

lTR,s (m). Le rapport entre l’intensité transmise T par l’échantillon d’épaisseur e (m) et

l’intensité transmise Ts par l’échantillon de référence permet une mesure de la longueur

de transport lTR (Eq.2.1). Ensuite connaissant la fraction volumique en particule et les

indices de réfraction de la phase continue et des particules, nous pouvons déterminer la

taille moyenne des particules par inversion de la théorie de Mie. L’intensité transmise T

décrôıt très rapidement avec l’épaisseur de l’échantillon et la concentration en particules.

Il faut donc trouver un compromis entre la sensibilité du détecteur et l’épaisseur ainsi que

la concentration de l’échantillon.

T

Ts
=

lTR

lTR,s

1 +
4lTR,s

3e

1 + 4lTR

3e

(2.1)

La technique de DTS s’applique sur un échantillon statique ou sous écoulement pour

des mesures de taille entre 100 nm et 10 µm.

2.3 Diffusing Wave Spectroscopie : DWS

La technique de DWS s’apparente à la technique de DLS en milieu dilué à la différence

que l’on considère une dispersion multiple de la lumière. Il a été démontré (Pine et al.,

1989) (Scheffold, 2002) que la propagation peut néanmoins être traitée comme une dis-

persion simple. Par conséquent les fluctuations temporelles des interférences constructives

et destructives fournissent des informations sur la dispersion locale due à une particule

comme la technique de DLS sans restriction de concentration et de turbidité.

L’échantillon doit être statique ou présenter une évolution lente. Il est possible de

mesurer une taille moyenne de quelques nanomètres à plusieurs micromètres connaissant
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la viscosité de la suspension. Néanmoins il est peu évident de déterminer une viscosité

asymptotique de la suspension concentrée pour un cisaillement quasi tendant vers zéro.

2.4 Cône cohérent de lumière

L’observation du cône cohérent de lumière (Wolf et Maret, 1985) est autre technique

permettant la mesure de la longueur de transport lTR. L’observation est effectuée en géo-

métrie de rétrodiffusion dans un très petit cône de l’ordre de 100 µrad. La technologie

pour obtenir une bonne précision (inférieure à 20 µrad) dans le cône nécessite un investis-

sement important dans la construction du dispositif Fig.2.2.a. La qualité et l’alignement

des composants optiques doivent être parfaits. Le faisceau incident est élargi puis focalisé

en une tâche large (≈ 10 cm) sur l’échantillon qui a la possibilité d’être statique ou en

mouvement. La sélection du cône est réalisée en positionnant un très petit trou (≈ 10 µm)

devant la caméra CCD. L’objectif du dispositif est de sélectionner les photons rétrodiffusés

immédiatement après leur entrée dans le milieu analysé. Les photons recherchés sont les

photons qui subissent en moyenne un événement unique de dispersion et qui restent ainsi

cohérent. Connaissant à la fois les propriétés optiques et la concentration, nous pouvons

déterminer une taille moyenne par inversion de la théorie de Mie sur la longueur de trans-

port lTR. Moyennant ces hypothèses, le cône cohérent de lumière permet la mesure d’une

taille comprise entre 100 nm et 10 µm.

Fig. 2.2 a. Dispositif de mesure du cône cohérent de lumière, (Vithana et al., 1993). b. Image

2D anisotrope d’un cône cohérent de lumière obtenue sur des cristaux liquides orientés,

(Sapienza et al., 2003).

Cette technique est également développée pour caractériser l’anisotropie des objets

diffusants. Cette méthode est notamment appliquée dans la littérature (Sapienza et al.,

2003) (Vithana et al., 1993) pour observer l’orientation de cristaux liquides soumis à un

champ magnétique (Fig.2.2.b). Deux longueurs de transport lTR,‖ et lTR,⊥ sont mesurées le
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long de l’axe d’orientation et suivant la direction perpendiculaire. Dans l’article (Sapienza

et al., 2003), un ratio de 1, 17 entre les deux longueurs de transport est mesuré sur une

solution de cristaux liquides p− pentyl − p′ − cyanobiphenyl sous un champ magnétique

de 0, 5 T .

Le cône cohérent de lumière peut permettre de caractériser simultanément la taille

et la morphologie des particules. Par contre, cette technique nécessite un investissement

financier important.

2.5 Ultrasons

La propagation des ultrasons dans une suspension s’avère une méthode puissante d’ana-

lyse physique et notamment pour une mesure granulomètrique ((McClements, 1991), (Mc-

Clements, 1995)) et une mesure de concentration (Howe et al., 1986).

La propagation des ultrasons dans un milieu homogène isotrope est caractérisée par

deux grandeurs : La vitesse de propagation et le coefficient d’atténuation.

La vitesse vus

(

ms−1
)

est donnée par la relation vus =
√

1/κρe, κ représente la com-

pressibilité du milieu (Pa−1) et ρe sa masse volumique kg/m3. La compressibilité dépend

beaucoup du type de matériaux, de sa phase (liquide, gaz), de sa composition, de sa struc-

ture, de sa température . . . . La mesure de cette vitesse caractéristique est réalisable soit

par la détermination d’un temps (∆t) (s) de propagation sur un échantillon d’épaisseur

connu e (m) avec vus = e/∆t soit par une mesure de la longueur d’onde des ultrasons λus

(m) à une fréquence donnée (fus) (Hz) avec la relation vus = λusfus.

Pour estimer une concentration, seule la mesure de la vitesse de propagation à une

fréquence donnée est utile (McClements, 1995). La courbe monotone de la Fig.2.3 illustre

la vitesse de propagation des ultrasons dans des émulsions d’huile dans de l’eau de diffé-

rentes concentrations à 20◦. Nous avons donc la possibilité de déduire une concentration

volumique de la phase huileuse à partir d’une mesure de la vitesse de propagation des ul-

trasons. Il faut néanmoins être extrêmement rigoureux sur la température de l’échantillons

étudié. En effet la compressibilité est extrêmement dépendante de la température comme

le prouvent les expérimentations (Chanamai et al., 1998).

La seconde grandeur intéressante est l’atténuation des ultrasons dans une direction due

à l’absorption et à la diffusion de l’onde dans le milieu traversé. Le coefficient d’atténua-
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Fig. 2.3 Variation de la vitesse des ultrasons en fonction de la fonction volumique d’huile à

20˚C, (Howe et al., 1986).

tion αus

(

m−1
)

est obtenu par des mesures en transmission de l’intensité pour différentes

épaisseurs de milieu. L’amplitude de l’onde I décrôıt exponentiellement suivant la loi de

Beer-Lambert I = I0 exp (−αuse) où I0 est l’amplitude incidente.

La vitesse de propagation et l’atténuation sont porteuses d’information sur la taille

des particules en suspension. L’ajustement des données expérimentales issues d’une étude

fréquentielle (de 0, 1 à 100 MHz) avec des prédictions théoriques conduit à une déter-

mination correcte d’une taille moyenne. En supposant une distribution log-normale, la

polydispersité peut être calculée (Wang et Povey, 1999) (McClements, 1996) en connais-

sant les propriétés acoustiques des phases continue et dispersée.

Les paramètres sont mesurables soit en transmission soit en réflexion (Fig.2.4) sur des

solutions statiques ou en mouvement.

Le domaine d’application s’étend du milieu dilué (quelques pourcents) jusqu’aux mi-

lieux concentrés à environ 50 %, pour une gamme de tailles très larges, de 20 nm à plusieurs

millimètres. L’article (Dickinson et al., 1997) donne un exemple d’application de la tech-

nique pour la caractérisation des phénomènes de crémage et de floculation d’une émulsion

d’huile dans de l’eau. Des restrictions importantes sont présentes. La mesure nécessite un

entrefer non mince (Supérieur à 10 millimètres) et elle est surtout extrêmement sensible

à la température de l’échantillon. Cette technique rapide, non intrusive et peu onéreuse

(environ 10ke), est utilisée pour des mesures en ligne, aussi bien sur une conduite que dans
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Fig. 2.4 Deux configurations de mesure en conduite, G et R sont respectivement le générateur

et le récepteur d’ultrason

un réservoir, via une sonde. Une connaissance précise des propriétés thermodynamiques

des phases continues et dispersées est néanmoins requise.

2.6 SAXS, SANS

Les techniques de ”Small Angle Neutron Scattering” (SANS) et ”Small Angle X-ray

Scattering” (SAXS) sont basées sur la diffusion aux petits angles (SAS) des neutrons et

des rayons X. Ces deux techniques rendent les milieux concentrés optiquement minces

par une diminution importante de la longueur d’onde de la source de radiation. On se

retrouve alors dans le cas d’une interaction avec en moyenne une particule isolée. La lon-

gueur d’onde des rayonsX ou des neutrons est d’environ 0, 1 nm ; elle est par conséquent

très petite comparée à la taille des particules étudiées.

Ces techniques de diffraction aux rayons X et aux neutrons sont difficiles d’accès. Elles

nécessitent un investissement important. Il existe de petit réacteur de rayon X mais né-

cessitant alors un temps d’exposition important (quelques heures). Ce type de mesure est

donc incompatible avec un suivi dynamique. Si nous prenons l’exemple extrême du syn-

chrotron européen de Grenoble (http ://www.esrf.fr) (70 millions d’euros de budget annuel

de fonctionnement), les électrons sont accélérés dans un anneau 844 mètres de circonfé-

rence pour atteindre une énergie de 6 milliards d’électronvolts. Le temps d’exposition pour

l’acquisition d’une image est de l’ordre de la milliseconde. Ces techniques de SAXS et de

SANS ont une résolution de l’ordre du nanomètre et permettent des découvertes scien-

tifiques dans de nombreux domaines : biologie, médecine, chimie, physique, matériaux,

environnement, . . . . La Fig.2.5 a été obtenue en SAXS à l’ESRF (ligne ID02) de Grenoble

sur un échantillon d’argile (sépiolite). Dans la troisième partie, une étude complète sur un

DILLET Jérôme 36
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échantillon de sépiolite sera présentée.

Fig. 2.5 Image de SAXS sur une argile (Sépiolite) - F. Pignon ; ESRF

L’étude de la décroissance radiale d’intensité de l’image diffusée apporte l’information

sur la taille moyenne des objets diffusants. Ces techniques offrent une large gamme de me-

sure de taille, de quelques nanomètres à quelques micromètres (Lindner et Zemb, 2002).

Elle est utilisable aussi bien sur des solutions au repos que sous cisaillement.

Outre une information sur la taille, l’image de diffusion (Pattern) de rayon X ou de

neutron peut apporter une indication sur la concentration en particule. En effet si les ob-

jets s’ordonnent, on peut déterminer une distance interparticulaire dI (Rojas-Ochoa et al.,

2002). Cette distance se mesure sur la décroissance spatiale d’intensité de l’image de dis-

persion.

Laurent Michot (Laboratoire Environnement et Minéralurgie - Nancy) a étudie une

argile sodique (Montmorillonite du Wyoming) sur la ligne ID02 de l’ESRF de Grenoble.

L’argile résulte d’une longue préparation : elle est purifiée pour ôter les ions lourds (fer)

puis la solution est créée par boudin de dialyse pour contrôler la force ionique. L’échan-

tillon d’agile étudié était un gel concentré à 10 g/l avec une force ionique de 10−3. La

taille moyenne des feuillets est estimée à 100 nm de diamètre pour 1 nm d’épaisseur. La

mesure aux rayons X (λ = 0, 0995 nm) est réalisée sur une géométrie de Couette avec
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un entrefer de 1 mm fixée sur un rhéomètre Haake RS300. La Fig.2.6 correspond à une

mesure à 3000 s−1, en observation tangentielle. Nous observons sur les deux décroissances

d’intensité verticale et horizontale des inflexions des courbes d’intensité. Ces inflexions

correspondent aux distances interparticulaires d entre deux objets dans les directions ver-

ticale et horizontale.

Fig. 2.6 Observation SAXS tangentielle sous cisaillement d’une argile sodique Montmorillonite

- Laurent Michot

Si la suspension est constituée de particules anisotropes, l’image de dispersion de SAXS

ou de SANS peut apporter également des indications sur leur orientation. Une image de

dispersion présentant une anisotropie est caractéristique de la présence d’une orientation

des particules dans l’échantillon. L’axe d’orientation des particules et l’axe de déformation

de l’image de dispersion sont perpendiculaires entre eux. L’anisotropie de l’image de dis-

persion est généralement caractérisée par un paramètre d’ordre P2. La Fig.2.7 représente

schématiquement des exemples d’images de diffusion. Nous pouvons calculer le paramètre

d’ordre pour u vecteur d’onde q quelconque (position radiale quelconque). En effet, la

longueur d’onde est très petite devant la taille des particules et le régime de diffusion est

proche de celui de la diffraction.
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Fig. 2.7 Schéma d’images de dispersion de rayon X.

L’article (Deutsch, 1991) donne un calcul de P2 (Eq.2.2), où I (ϕ) est l’intensité de dis-

persion dans une direction ϕ. Ce paramètre varie de 1 pour une tache très anisotrope dans

l’axe ϕ = 0 à −0.5 pour une tache orientée perpendiculairement. La valeur 0 correspond

à une orientation aléatoire (tache circulaire).

P2 = 1 −
1

∫ π/2
0 I (ϕ) dϕ

3

2

∫ π/2

0
I (ϕ)

[

sin2 ϕ+
(

sinϕ cos2 ϕ
)

ln

(

1 + sinϕ

cosϕ

)]

dϕ (2.2)

L’anisotropie de la tache de dispersion peut également être caractérisée par le calcul

du paramètre A2 (Eq.2.3). Il varie entre −1 pour une tache anisotrope alignée avec l’axe

ϕ = 0 et 1 pour une tache perpendiculaire. En orientation aléatoire, A2 est nul.

A2 =

∫ π/2
0 I (ϕ) cos (2ϕ) dϕ
∫ π/2
0 I (ϕ) dϕ

(2.3)

Les techniques de SAXS et SANS sont des techniques très onéreuses mais très complètes

pour l’étude des suspensions de particules. Elles permettent, dans certaine condition, une

mesure de la taille des particules diffusantes (de quelques nanomètres et la dizaine de mi-

cromètres), de leur concentration volumique et de leur orientation moyenne. L’acquisition

d’une image de dispersion est plus ou moins rapide suivant la puissance de l’accélérateur

de particule.
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2.7 Conclusion

Les techniques optiques de DWS, DTS et du cône cohérent de lumière sont des tech-

niques de mesure indirectes d’une taille moyenne de particule. Elles n’apportent pas d’in-

formation sur la fraction en particules des échantillons. La technique du cône cohérent

présente l’avantage de caractériser également l’anisotropie d’un système.

La technologie des ultrasons possède certaines des caractéristiques recherchées. Elle

est non intrusive, applicable sur un échantillon statique ou en évolution et nécessite un

coût relativement modeste. Par contre elle n’offre aucune information sur la morphologie

des particules. De plus, elle nécessite un parfait contrôle de la température de l’échantillon.

Les mesures de SAXS et SANS apportent dans certaines conditions et pour un inves-

tissement conséquent une bonne solution à la caractérisation complète d’une dispersion

(taille, morphologie et concentration).
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Conclusion Partie 1

La recherche bibliographique exposée dans cette première partie montre que la caractéri-

sation complète des suspensions aléatoires concentrées n’est pas aisée. Seuls les techniques

de diffusion aux petits angles de neutrons et de rayons X apportent une solution à la

caractérisation sur l’ensemble des points désirés que sont :

– La taille moyenne des objets.

– La fraction volumique en objets.

– L’anisotropie et l’orientation des objets diffusants.

Nous récapitulons l’ensemble des techniques de caractérisation dans un tableau à la

page suivante. La classification des techniques est réalisée suivant la concentration crois-

sante des suspensions. Nous explicitons les sources radiatives utilisées, le domaine d’appli-

cation en fraction volumique, le domaine d’application en taille ou en distribution granu-

lométrique, la possibilité de quantification de l’anisotropie, le coût et l’état (statique ou

en écoulement) de la suspension.
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Récapitulatif des techniques de caractérisation des suspensions
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Pour pallier l’absence de technique de caractérisation in-stitu des suspensions opaques,

peu onéreuse avec un encombrement réduit, nous avons construit notre dispositif de trans-

port stationnaire de lumière. Ce dispositif est accompagné par de nombreuses études théo-

riques sur le transport de lumière et de polarisation.

La partie suivante de ce mémoire apporte la description et la validation théorique de

cette nouvelle technique de caractérisation. Ensuite, nous présenterons différentes applica-

tions expérimentales de la technique. Nous caractériserons le mécanisme de coacervation

par des mesures simultanées de la taille moyenne et de la concentration des particules.

Par ailleurs, nous observerons l’orientation et la déformation de suspensions d’argile, de

suspensions de bâtonnets de verre et de suspensions de globules rouges.
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Partie II

Transport incohérent de

lumière polarisée

en milieu aléatoire

Dans cette seconde partie de ce mémoire de thèse, nous présentons un nouveau concept

de caractérisation des suspensions basé sur le transport incohérent de lumière polarisée.

L’objectif de cette nouvelle méthode porte sur la détermination simultanée d’une taille

moyenne et d’une fraction volumique dans des suspensions concentrées. La recherche sur

les techniques existantes réalisée précédemment, nous a montré les difficultés rencontrées

pour caractériser directement des suspensions concentrées de façon non intrusive, sans di-

lution et avec un investissement et un encombrement restreints

La lumière est une onde électromagnétique plane. Elle se caractérise par sa longueur

d’onde, son intensité lumineuse et son état de polarisation. La propagation d’une onde

dans un milieu dépend directement des propriétés de ce milieu. Nous allons donc utiliser

la lumière visible pour sonder les suspensions et ainsi extraire des informations sur leur

concentration et la taille moyenne des particules qui la constituent. L’étude est basée sur

l’interaction entre une onde électromagnétique plane et une particule sphérique homogène

(théorie de Mie). La lumière arrivant sur une particule est dispersée dans tout l’espace

autour de celle-ci. Cette théorie ne fait intervenir que la taille de la particule et les indices
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optiques du milieu environnant et de la particule. Appliquée à une suspension, la fraction

volumique influe également sur le transport de lumière. La thèse de Julien Mougel (Mou-

gel, 2006) a montré que la modélisation du transport incohérent de lumière non-polarisée

en milieu aléatoire permettait de déterminer un paramètre (notamment la taille) parmi

les trois. Nous proposons avec l’étude en lumière polarisée de déterminer deux paramètres

physiques de la suspension (taille et fraction volumique) parmi les trois.

Cette partie est décomposée en sept chapitres. Lors des cinq premiers chapitres nous

positionnerons la technique avec une importante et longue étude théorique. Le premier

chapitre constituera une introduction sur l’onde électromagnétique et l’interaction avec

une particule sphérique (chap.3). Dans le chapitre suivant, la lumière sera non-polarisée

et nous présenterons le transport scalaire de la lumière incohérente en milieu aléatoire

(chap.4). Dans les chapitres suivant, la lumière sera considérée comme une grandeur vec-

torielle et nous étudierons le transport de polarisation. Le troisième chapitre donnera une

description du dispositif de diffusion élaboré par nos soins (chap.5). Les deux chapitres

suivants constitueront des approches théorique de l’interaction entre la lumière polarisée

et une suspension de particules sphériques. Nous utiliserons un modèle analytique à deux

événements de dispersion (chap.6) puis des simulations complètes de Monté-Carlo (chap.7).

Le chap.7 mettra un terme aux études théoriques. Les deux derniers chapitres de cette

partie ainsi que la troisième et dernière partie de ce mémoire seront essentiellement expé-

rimentaux.

La fin de cette partie apportera la validation de la mesure granulomètrique sur des

émulsions d’huile dans de l’eau (chap.8) puis à l’application de la technique pour la carac-

térisation du mécanisme de coacervation complexe (chap.9).
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Chapitre 3

Interaction d’une OEM avec

une particule

Nous débuterons l’étude théorique du transport incohérent de lumière polarisée avec

une introduction sur l’interaction entre une onde électromagnétique plane et une particule

sphérique homogène.

Le chapitre expose une description de l’onde électromagnétique ainsi que sur les for-

malismes utilisés pour définir la polarisation d’une onde. Puis nous introduirons la théorie

permettant de calculer l’interaction entre une onde électromagnétique et une particule

sphérique (théorie de Mie).

3.1 Onde Électromagnétique

3.1.1 Préambule

La source utilisée pour l’étude du transport de lumière est une onde électromagnétique

(OEM) plane, monochromatique, située dans le domaine visible (λ = 635 nm). Une OEM

plane est définie par deux grandeurs. La première grandeur, considérée comme scalaire,

représente l’intensité ou l’énergie de l’OEM. Elle est reliée à l’amplitude de l’onde. La

seconde grandeur, vectorielle, caractérise son état de polarisation.

Toute OEM est constituée à la fois d’un champ électrique et d’un champ magné-

tique. Ces deux champs oscillent perpendiculairement avec une fréquence ω dans le plan
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Chapitre 3. Interaction d’une OEM avec une particule

Fig. 3.1 Spectre électromagnétique

perpendiculaire à la direction de propagation, Fig.3.2. Le champ électrique ~E, le champ

magnétique ~B et la direction de propagation ~z forment un trièdre direct. Ces deux champs

sont gouvernés par les équations de Maxwell (Voir par exemple (Feynman, 1979a)). La

pulsation d’oscillation ω
(

rad.s−1
)

est liée à la longueur d’onde dans le vide λ (m) par

la relation λ = 2πc/ω où c = 3, 108 m/s est la célérité de la lumière dans le vide. Les

expressions du champ électrique et du champ magnétique pour une onde plane mono-

chromatique sont données dans l’Eq.3.1. Le vecteur ~k = 2πNm/λ~z est le vecteur d’onde,

parallèle à la direction de propagation ~z.

~E = ~E0e
i(~k.~z−ωt)

~B = ~B0e
i(~k.~z−ωt)

(3.1)

La polarisation d’une onde se définit par le positionnement du champ électrique dans

le plan perpendiculaire à la direction de propagation. La Fig.3.2 est une représentation

schématique de la propagation d’une onde à polarisation linéaire verticale. Le champ élec-

trique oscille toujours dans la direction verticale.

Fig. 3.2 Onde électromagnétique avec une polarisation linéaire verticale
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3.1 Onde Électromagnétique

3.1.2 Formalisme de Jones

Le champ électrique (Fig.3.3) oscillant dans le plan perpendiculaire à la direction de

propagation peut être représenté par la somme de deux composantes E‖ et E⊥ (Eq.3.2).

~E =

(

E‖

E⊥

)

=

(

E0‖e
i(~k.~z−ωt+δ‖)

E0⊥e
i(~k.~z−ωt+δ⊥)

)

~E =ei(
~k.~z−ωt)

(

E0‖e
iδ‖

E0⊥e
iδ⊥

)
(3.2)

Fig. 3.3 Champ électrique

Les deux composantes complexes E‖ (Axe vertical) et E⊥ (Axe horizontal) constituent

le formalisme de Lénard-Jones. Les différentes valeurs des composantes permettent de dé-

finir les différents états de polarisation d’une OEM : linéaires, circulaires et elliptiques. La

Fig.3.4 donne des représentations de quelques états de polarisation.

Fig. 3.4 États de polarisation d’une OEM et formalisme de Lénard-Jones
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Chapitre 3. Interaction d’une OEM avec une particule

Toute interaction entre une OEM et un milieu (miroir, particule, suspension, . . . )

est illustrée par une matrice de passage de composantes complexes 2 × 2 entre le champ

électrique incident ~Ei et le champ électrique de sortie ~Es (Fuller, 1995). Pour une particule,

l’intensité dispersée à une distance r (m) est donnée par l’Eq.3.3 où Ji sont les coefficients

de la matrice de Jones

.
(

E‖s

E⊥s

)

=
exp (−ik (~r − ~z))

−ikr

(

J2 J3

J4 J1

)(

E‖i

E⊥i

)

(3.3)

3.1.3 Polarisation de la lumière

3.1.4 Formalisme de Stokes

Ce formalisme complexe peut être substitué par le formalisme de Stokes (voir par

exemple (Bohren et Huffman, 1983)). Ce formalisme permet d’exprimer le champ élec-

trique par un vecteur S constitué de quatre composantes réelles (Eq.3.4), où Ē est le

complexe conjugué de E. La composante S0 du vecteur de Stokes correspond à l’intensité

du champ électrique et les composantes S1, S2 et S3 du vecteur de Stokes décrivent l’état

de polarisation de l’onde. Les composantes d’un vecteur de Stokes sont toujours liées par

la relation
(

S0
)2

=
(

S1
)2

+
(

S2
)2

+
(

S3
)2

.

S =















S0

S1

S2

S3















=















〈|E‖|
2 + |E⊥|

2〉

〈|E‖|
2 − |E⊥|

2〉

〈Ē‖E⊥ +E‖Ē⊥〉

i〈Ē‖E⊥ −E‖Ē⊥〉















=















Énergie totale

Différence d’énergie entre les polarisations linéaires horizontale et verticale

Différence d’énergie entre les polarisations linéaires obliques

Différence d’énergie entre les polarisations circulaires















(3.4)

Nous avons vu que le formalisme de Stokes introduit quatre composantes. L’interaction

entre une OEM et un milieu est alors décrite par une matrice de passage de dimension

4 × 4. Cette matrice appelée matrice de Mueller, relie l’état de l’onde incidente Si à l’onde

de sortie Ss (Eq.3.5). Les composantes de la matrice de Mueller Mij seront définis à partir

des composantes de Jones par les relations de l’Eq.3.6 où J̄ est le complexe conjugué de

J .
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3.1 Onde Électromagnétique

Ss =
1

k2r2















M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44















Sis (3.5)

M11 = 1
2

(

|J1|
2 + |J2|

2 + |J3|
2 + |J4|

2
)

M12 = 1
2

(

|J2|
2 − |J1|

2 + |J4|
2 − |J3|

2
)

M13 = Re
{

J2J̄3 + J1J̄4

}

M14 = Im
{

J2J̄3 − J1J̄4

}

M21 = 1
2

(

|J2|
2 − |J1|

2 − |J4|
2 + |J3|

2
)

M22 = 1
2

(

|J2|
2 + |J1|

2 − |J4|
2 − |J3|

2
)

M23 = Re
{

J2J̄3 − J1J̄4

}

M24 = Im
{

J2J̄3 + J1J̄4

}

M31 = Re
{

J2J̄4 + J1J̄3

}

M32 = Re
{

J1J̄2 − J1J̄3

}

M33 = Re
{

J1J̄2 + J3J̄4

}

M34 = Im
{

J2J̄1 + J4J̄3

}

M41 = Im
{

J̄2J4 + J̄3J1

}

M42 = Im
{

J̄2J4 − J̄3J1

}

M43 = Im
{

J1J̄2 − J3J̄4

}

M44 = Re
{

J1J̄2 − J3J̄4

}

(3.6)

Les seize éléments de la matrice de Mueller caractérisent entièrement l’interaction entre

l’OEM et tout élément optique.

La mesure expérimentale d’une telle matrice nécessite l’envoi de quatre vecteurs de

Stokes (quatre états de polarisation) incidents indépendants Si dit ’Générateur’ et l’ana-

lyse de chacun d’entre eux par quatre vecteurs de Stokes de sortie indépendants Ss dit

’Analyseur’.

3.1.5 Polarisation

Les états de polarisation usuels de la lumière sont récapitulés dans le tableau Tab.3.1.

La convention positive est choisie dans le sens trigonométrique direct dans la direction de

propagation de l’onde. Cette convention est la plus répandue dans la littérature (Feynman,

1979b). L’ensemble des travaux réalisés dans cette thèse est basé exclusivement sur ces
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Chapitre 3. Interaction d’une OEM avec une particule

six états de polarisation(linéaire vertical, linéaire horizontale, linéaire +45◦, linéaire −45◦,

circulaire droit et circulaire gauche).

Vertical Horizontal

S =















1

1

0

0















S =















1

−1

0

0















+45̊ −45̊

S =















1

0

1

0















S =















1

0

−1

0















Circulaire gauche Circulaire droit

S =















1

0

0

1















S =















1

0

0

−1















Tab. 3.1 Les six états de polarisation usuels de la lumière

3.2 Interaction OEM - particule sphérique

3.2.1 Dispersion par une particule sphérique homogène

L’interaction entre une OEM et une particule sphérique homogène dépend des pro-

priétés de l’onde électromagnétique (longueur d’onde λ et état de polarisation S), des

propriétés du milieu dispersant (rayon de la particule a et un indice de réfraction de la

particule Np) et de sa phase continue (indice de réfraction du milieu Nm).
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3.2 Interaction OEM - particule sphérique

La figure Fig.3.5 est une représentation schématique de la dispersion d’une OEM in-

cidente de vecteur directeur ~s′ sur une particule sphérique centrée au point O. L’onde est

dispersée tout autour de la particule. En choisissant une direction d’observation ~s, nous

définissons un plan de dispersion portant les vecteurs ~s et ~s′ caractérisé par l’angle φ puis

une direction de dispersion dans ce plan avec l’angle θ.

Fig. 3.5 Événement de dispersion

Pour une particule sphérique homogène les coefficients J3 et J4 de l’Eq.3.3 sont nuls.

Les deux autres coefficients J1 et J2 sont calculés ci-dessous avec la théorie de Mie.

3.2.2 Théorie de Mie

L’interaction entre une particule sphérique homogène non-absorbante et une OEM

plane fut résolue par Gustav Von Mie (Mie, 1908). Cette théorie de Mie permet de quan-

tifier l’ensemble du champ électromagnétique autour et à l’intérieur d’une particule. Les

livres de (Bohren et Huffman, 1983) et (Ishimaru, 1997) présentent cette théorie en don-

nant les éléments de calcul des coefficients J1 et J2 de la matrice de Jones. La théorie de

Mie est à la base des études de diffusion réalisées lors de cette thèse.

Deux paramètres adimensionnés sont utilisés pour caractériser totalement l’interaction

entre l’OEM et une particule :
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Chapitre 3. Interaction d’une OEM avec une particule

– Le paramètre de taille x = ka = 2πNma/λ ou a (m) est le rayon de la particule, Nm

est l’indice optique du milieu suspendant et λ (m) est la longueur d’onde de l’OEM

dans le vide.

– Le paramètre optique m = Np/Nm où Np est l’indice optique de la particule.

Les différentes étapes du calcul des coefficients complexe de Jones (J1 (x,m, θ) et

J2 (x,m, θ)) sont développées dans l’annexe en fin de ce chapitre.

3.2.3 Les grandeurs de dispersion

Nous introduisons alors des grandeurs caractéristique de la dispersion calculées à partir

des coefficients de Jones J1 (x,m, θ) (Eq.3.20) et J2 (x,m, θ) (Eq.3.21) :

– La section efficace de dispersion Cscat (m2) est donnée par la relation suivante

(Eq.3.7) :

Cscat (x,m) =
λ2

4πN2
m

∫ x

0

(

|J1 (x,m, θ)|2 + |J2 (x,m, θ)|2
)

sin (θ) dθ (3.7)

Pour donner une interprétation physique à la grandeur Cscat, nous pouvons suppo-

ser un détecteur de lumière positionné derrière une particule interagissant avec une

OEM plane. L’énergie électromagnétique transmise au détecteur est plus faible que

celle transmise en l’absence de particule. Ce phénomène s’apparente à une extinction

du faisceau incident par la particule. La différence d’énergie est due à la dispersion

par la particule. Le rapport entre la vitesse d’extinction de cette énergie au travers de

la particule et l’intensité incidente définit la section efficace de dispersion notée Cscat.

– La fonction de phase p (x,m, θ) (Eq.3.8) représente la distribution angulaire de l’éner-

gie dispersée autour de la particule (probabilité de dispersion dans la direction θ).

Nous utilisons un facteur de normalisation Fnorm (x,m) (Eq.3.9) :

p (x,m, θ) =
(

|J1 (x,m, θ)|2 + |J2 (x,m, θ)|2
)

Fnorm (x,m) (3.8)

1

Fnorm (x,m)
=
Cscat (x,m)

λ2

4πN2
m

(3.9)

– Le facteur d’anisotropie g (x,m) (Eq.3.10) représente le cosinus moyen de l’angle de

dispersion :

g (x,m) =

∫ π

0
p (θ) cos θ sin θdθ (3.10)
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3.3 Conclusion

Dans l’approximation de Rayleigh (particules petites devant la longueur d’onde :

x << 1), le facteur d’anisotropie est nul et la fonction de phase est donnée par la

relation p (θ) = 3/8
(

1 + cos2 θ
)

, indépendante de x et m. Lorsque les particules sont plus

grosses, g > 0, la dispersion se fait de manière privilégiée vers l’avant, c’est à dire dans la

direction ~s′ de l’onde incidente. La Fig.3.6 montre l’évolution de la probabilité de disper-

sion en fonction de la taille de particule.

Fig. 3.6 Représentation en échelle logarithmique de la fonction de phase p (θ) (répartition

d’énergie autour de la particule) pour différentes valeurs de x avec m = 1.1

3.3 Conclusion

La lumière est une OEM définie par une grandeur scalaire (intensité, énergie) et une

grandeur dite vectorielle (état de polarisation). La polarisation d’une onde est donnée

par deux composantes complexes dans le formalisme de Jones et par quatre composantes

réelles dans le formalisme réel de Stokes. Nous avons distingué six états de polarisation

simples de la lumière : Les polarisations linéaires (verticale, horizontale, oblique à 45◦,

oblique à −45◦) et les polarisations circulaires (gauche et droite).

Une OEM arrivant sur une particule, est dispersée. Pour une particule sphérique ho-

mogène non-absorbante, la distribution d’énergie autour de la particule est caractérisée

par trois grandeurs calculées à partir de la théorie de Mie : la probabilité de disper-
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sion p (x,m, θ), la section efficace de dispersion Cscat (x,m) et le facteur d’anisotropie

optique g (x,m). Ces fonctions utilisent les paramètres adimentionnés x = 2πaNm/λ et

m = Np/Nm où a est la taille de la particule, λ est la longueur d’onde de l’onde incidente,

Np est l’indice de réfraction de la particule et Nm est l’indice de réfraction du milieu.

Dans le prochain chapitre, nous décrirons l’interaction d’une onde non plus avec une

seule particule mais avec un ensemble de particules.
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Annexe : Calcul des coefficients de Jones par la théorie de

Mie

Voici les différentes étapes de calcul permettant d’obtenir les coefficients de Jones

(J1 (x,m, θ) et J2 (x,m, θ)) (Bohren et Huffman, 1983) pour une sphère homogène, connais-

sant x = 2πaNm/λ et m = Np/Nm.

– Nous utilisons les fonctions de Bessel modifiées j (x) (Eq.3.11) et y (x) (Eq.3.12) :















j0 (x) = sin(x)
x

j1 (x) = sin(x)
x2 − cos(x)

x

jn (x) = 2n−1
x jn−1 (x) − jn−2 (x) n ≥ 2

(3.11)















y0 (x) = − cos(x)
x

y1 (x) = − cos(x)
x2 − sin(x)

x

yn (x) = 2n−1
x yn−1 (x) − yn−2 (x) n ≥ 2

(3.12)

– Puis nous définisons les fonctions ψ (x) (Eq.3.13), ζ (x) (Eq.3.14) etD (x,m) (Eq.3.15) :

ψn (x) = xj (x) n ≥ 2 (3.13)

ζn (x) = ψ (x) + ixyn (x) n ≥ 2 (3.14)






D0 (x,m) = − 1
tan(mx)

Dn (x,m) = 1
n

mx
−Dn−1(x) −

n
mx n ≥ 1

(3.15)

– Nous calculons les fonctions an (x,m) (Eq.3.16) et bn (x,m) (Eq.3.17) :

an (x,m) =

(

Dn(x,m)
m + n

x

)

ψn (x) − ψn−1 (x)
(

Dn(x,m)
m + n

x

)

ζn (x) − ζn−1 (x)
n ≥ 1 (3.16)

bn (x,m) =

(

mDn (x,m) + n
x

)

ψn (x) − ψn−1 (x)
(

mDn (x,m) + n
x

)

ζn (x) − ζn−1 (x)
n ≥ 1 (3.17)

– Nous utilisons également les fonctions π (θ) (Eq.3.18) et τ (θ) (Eq.3.19) :















π0 (θ) = 0

π1 (θ) = 1

πn (θ) = 2n−1
n−1 cos (θ)πn−1 (θ) − n

n−1πn−2 (θ) n ≥ 1

(3.18)
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{

τ1 (θ) = cos (θ)

τn (θ) = n cos (θ)πn (θ) − (n+ 1) πn−1 (θ) n ≥ 2
(3.19)

– Nous pouvons alors calculer les amplitudes complexes de dispersion J1 (x,m, θ)

(Eq.3.20) et J2 (x,m, θ) (Eq.3.21) utilisées dans le formalisme de Jones, Eq.3.3. Le

critère de convergence est choisi sur les fonctions an (x,m) (Eq.3.16) et bn (x,m)

(Eq.3.17). Ces fonctions tendent vers 0 quand n augmente. Nous avons choisi la va-

leur de 10−10 sur les modules des deux fonctions comme critère d’arrêt.

J1 (x,m, θ) =
nb
∑

n=1

2n+ 1

n (n+ 1)
(an (x,m)) πn (θ) + bn (x,m) τn (θ) (3.20)

J2 (x,m, θ) =

nb
∑

n=1

2n+ 1

n (n+ 1)
(an (x,m)) τn (θ) + bn (x,m) πn (θ) (3.21)
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Chapitre 4

Transport stationnaire de

lumière non-polarisée

Ce chapitre résume la thèse de Julien Mougel (Mougel, 2006) et l’article (Baravian

et al., 2005). La lumière peut être associée à une grandeur scalaire (non-polarisée) repré-

sentant son énergie (élément S0 du vecteur de Stokes). Lorsqu’une onde électromagné-

tique est envoyée dans un milieu diffusant, cette onde subit de multiples dispersions sur

les particules. La modélisation du transport stationnaire de lumière dépend de la fraction

volumique en particules ϕv et de l’événement local de dispersion étudié dans le chapitre

précédent donné par Cscat (x,m), p (x,m, θ) et g (x,m).

Nous introduisons alors deux distances caractéristiques. La première distance est la

longueur de dispersion ls donnant la distance entre deux événements successifs de dis-

persion. La seconde distance est le libre parcourt moyen ldec caractérisant le pouvoir de

diffusion d’un milieu. Cette longueur de décorrélation correspond à la distance moyenne

parcourue par l’OEM pour une perte totale de l’information sur son sa direction initiale.

Si nous prenons l’exemple du brouillard qui est composé de fines gouttelettes d’eau diffu-

santes, la longueur de décorrélation correspond à la distance à partir de laquelle nous ne

distinguons plus les formes des objets. Dans cet exemple la longueur de décorrélation est

de quelques dizaines de mètres. Pour des solutions colloı̈dales concentrées, cette distance

n’est alors plus que de quelques centaines de micromètres.

Dans ce chapitre, nous décrirons le transport scalaire incohérent de lumière sur un en-

semble de particules. Puis nous présenterons la modélisation analytiquement du transport

stationnaire de lumière non-polarisée par une résolution des équations du transfert radia-
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tif. Nous terminerons par valider la mesure expérimentale de la longueur de décorrélation

sur des émulsions d’huile dans de l’eau.

4.1 Diffusion par une collection de particule

L’analyse de l’interaction d’une OEM avec une particule dans le précédent chapitre

a montrée une dépendance avec deux paramètres adimensionnés x = 2πaNm/λ et m =

Np/Nm. L’interaction d’une OEM avec une suspension de particules monodisperses (rayon

a) positionnées aléatoirement dans l’espace dépend également de la fraction volumique en

particule ϕv .

La propagation d’une OEM dans un milieu diffusant se traduit par des dispersions

successives. La distance entre deux événements de dispersion ls nommée longueur de dis-

persion et donnée par l’équation Eq.4.1 où le paramètre ρP (m−3) est le nombre de particule

par unité de volume : ρP = 3φv/4πa
3.

ls (x,m,ϕv) =
1

ρPCscat(x,m)
=

4πa3

3ϕvCscat(x,m)
∝

1

ϕv
(4.1)

La Fig.4.1 représente la propagation d’un photon. Dans le cas d’une propagation vers

l’avant privilégiée (g > 0), deux événements successifs ne sont donc pas indépendants l’un

de l’autre. Cependant après un nombre de pas de dispersion 1/ (1 − g), le photon perd l’in-

formation sur sa direction initiale. La distance correspondante à cette perte d’information

est nommée longueur de décorrélation ldec. Cette grandeur physique dépend de ls et de g

suivant la relation Eq.4.2. La distance ldec (m) tout comme la distance ls sont inversement

proportionnelles à la fraction volumique φv.

ldec (x,m,ϕv) =
ls (x,m,ϕv)

1 − g (x,m)
(4.2)

Lors d’un événement de dispersion, une partie de l’énergie du photon peut-être absor-

bée par la particule. A partir d’un certain nombre d’événements de dispersion le photon

disparâıt (Fig.4.1). La distance moyenne parcourue correspondante définie la longueur

d’absorption la. L’absence d’absorption se traduit par la → ∞. Dans le cas opposé, nous

avons la → 0 pour des particules noires totalement absorbantes.

Ces deux longueurs définissent alors la longueur de transport lTR correspondant au

libre parcours moyen des photons dans une suspension, Eq.4.3.

1

lTR
=

1

ldec
+

1

la
(4.3)
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4.2 Modélisation analytique

Fig. 4.1 Longueur de dispersion ls, longueur de décorrélation ldec et longueur de d’absorption

la

Nous étudierons essentiellement dans la suite de ce mémoire des milieux non-absorbant

(excepté le sang chap.12). Nous supposerons donc que nous avons la >> ls soit lTR ≈ ldec.

4.2 Modélisation analytique

La modélisation de la décroissance radiale d’intensité lumineuse rétrodiffusée I (ρ) est

obtenue par résolution des équations du transfert radiatif en approximation de diffusion.

Nous allons mentionner les différents points nécessaires à l’obtention des expressions ana-

lytiques.

4.2.1 Équation de transfert radiatif et approximation de diffusion

L’équation de transfert radiatif stationnaire (Eq.4.4) introduit la notion de radiance

notée, ~L (~r, ~s), donnant une densité de flux émise en un point ~r dans l’angle solide orienté

suivant le vecteur ~s.

~s.∇~L (~r, ~s) = −

(

1

ls
+

1

la

)

~L (~r, ~s) +
1

2πls

∫

4π
p
(

~s, ~s′
)

~L
(

~s, ~s′
)

dΩ′ + ~Q (~r, ~s) (4.4)

Cette équation traduit la variation de flux ~s.∇~L (~r, ~s) comme une somme de trois com-

posantes (Fig.4.2). Le terme négatif, représente le flux perdu par dispersion et absorption
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dans l’élément de volume. Le second élément correspond au flux incident d’une direction

~s′ dispersé dans la direction ~s. On y retrouve la fonction de phase, p
(

~s, ~s′
)

= p (θ), in-

troduite dans le chap.3 (Eq.3.8). La dernière composante, ~Q (~r, ~s), représente une source

interne.

Fig. 4.2 Représentation de l’équation de transfert radiatif ; Bleu : Le flux perdu dans la direction

~s par dispersion et absorption, Rouge : Le flux reçu dans la direcction ~s par dispersion

depuis la direction ~s′ et Vert : Le terme source

L’équation du transfert radiatif n’ayant pas de solution analytique, nous la simplifions

avec l’approximation de diffusion (Haskell et al., 1994), (Ishimaru, 1997), (Paasschens,

1997), (Kienle et Patterson, 1997), (Gopal et Durian, 1999). La notion de diffusion im-

plique qu’après un nombre suffisamment important d’événement de dispersion la distri-

bution de direction d’un photon est uniforme dans l’espace. L’expression de la radiance,

l’Eq.4.5, est approchée par la somme d’une partie isotrope (indépendante de la direction)

nommée fluence, ~Φ(~r) et d’une partie anisotrope dans la direction ~s approximée par un

développement limité en flux de radiance ~F (~r).

~L (~r, ~s) ≈
1

4π
~Φ(~r) +

3

4π
~F (~r) .~s+ ... (4.5)

En modifiant l’expression de la radiance (Eq.4.5) puis en intégrant l’Eq.4.4 nous dé-

duisons l’équation de diffusion pour la fluence ~Φ(~r) (Eq.4.6). ~S (~r) est la source diffusive

de photon (Pour plus d’information voir (Mougel, 2006)).

∇2~Φ(~r) −
3

laldec

~φ (~r) =
3

ldec

~S (~r) (4.6)

4.2.2 Géométrie de rétrodiffusion

L’observation du phénomène de diffusion en état stationnaire est possible soit en trans-

mission à travers une couche finie d’échantillon ou en géométrie de rétrodiffusion. Les mi-
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4.2 Modélisation analytique

lieux étudiées étant turbides, l’intensité lumineuse décrôıt très rapidement dans le milieu.

L’intensité transmise par un échantillon peut rapidement devenir quasi nulle si l’épaisseur

de l’échantillon augmente. Nous avons donc choisi la configuration de rétrodiffusion en mi-

lieu semi-infini (Demi espace, Fig.4.3). Nous considérons expérimentalement qu’un milieu

semi-infini est un échantillon d’épaisseur supérieure à dix fois sa longueur de transport

lTR. En géométrie de rétrodiffusion, la direction d’observation de la camera tout comme

la direction incidente de la source laser sont quasi normales au plan d’observation.

Fig. 4.3 Schéma de rétrodiffusion

Le principal avantage de la géométrie de rétrodiffusion est de permettre l’étude d’une

large gamme de milieux diffusants sans importante modification de la puissance lumineuse

incidente ou du temps d’intégration de la caméra, pour des gammes de longueur de trans-

port comprises entre 100 nm et quelques millimètres. Cette géométrie ne nécessite par

ailleurs aucun étalon d’intensité. L’image rétrodiffusée se suffit à elle-même pour une ana-

lyse complète.

4.2.3 Modèle de Haskell

La modélisation est réalisée avec une source diffusive considérée comme ponctuelle en

z = lTR, Fig.4.4. De plus la frontière (z = 0) entre le milieu diffusant et le demi-espace

inférieur est traduite par une condition limite appropriée, (Mougel, 2006). L’origine du

système de coordonnées est donnée par le point d’impact du faisceau laser.

La solution analytique de l’intensité rétrodiffusée I (ρ) sont calculées avec la méthode

des images conjuguées pour une interface iso-intensité entre l’échantillon et le milieu exté-

rieur. Une solution simplifiée, nommée modèle de Haskell, (Eq.4.7) est valable dans le cas

pratique où nous négligeons l’absorption (la → ∞) (Baravian et al., 2005). Nous remar-
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Fig. 4.4 Positionnement d’un point M dans l’espace (ρ, θ, z) et de la source diffusive

(z = lTR, ρ = 0)

quons que la seule variable dans cette expression est la longueur de transport lTR.

I(ρ) =
1

l2TR





a

(1 + ρ2

l2
TR

)
3

2

+
d

(c+ ρ2

l2
TR

)
3

2

+
b

(1 + ρ2

l2
TR

)
1

2

−
b

(c+ ρ2

l2
TR

)
1

2



 (4.7)

avec a = 0.0398, b = 0.0597, c = 5.4444 et d = 0.09284 dans le cas d’une interface isoindice.

La seconde expression nommée modèle de Haskell avec absorption, (Eq.4.8) est la

solution pour un propagation dans un milieu absorbant avec une longueur d’absorption

la = 3/
(

µeff l
2
TR

)

(Haskell et al., 1994) ; µeff (m−1) est le coefficient d’absorption. Cette

expression analytique dépend de deux grandeurs : la longueur de transport lTR et le co-

efficient d’absorption µeff . Nous utiliserons cette modélisation dans les expérimentations

réalisées sur le sang (Chap.12).

I(ρ) = 1

l2
TR



















exp



−µeff lTR

(

1+ ρ2

l2
TR

) 1
2















a

1+
ρ2

l2
TR











1
(

1+
ρ2

l2
TR

) 1
2

+µeff











+ b
(

1+
ρ2

l2
TR

) 1
2





























+ 1

l2
TR



















exp



−µeff lTR

(

c+ ρ2

l2
TR

) 1
2















d

c+
ρ2

l2
TR











1
(

c+
ρ2

l2
TR

) 1
2

+µeff











− b
(

c+
ρ2

l2
TR

) 1
2





























(4.8)

avec a = 0.0398, b = 0.0597, c = 5.4444 et d = 0.09284 dans le cas d’une interface isoindice.

Ces deux modèles apportent une parfaite modélisation de la décroissance radiale d’in-

tensité pour un rayon ρ compris entre ρ = lTR et l’infini (Baravian et al., 2005).
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4.3 Dispositif expérimental d’acquisition du transport de lumière

non-polarisée

4.2.4 Modèle à double sources

Pour modéliser l’ensemble de la décroissance radiale d’intensité ρ ∈ [0 ; +∞ [ d’un

milieu non-absorbant, nous avons construit un nouveau modèle dit à double sources (Ca-

ton et al., 2006). L’amélioration par rapport au modèle de Haskell (Eq.4.7) porte sur

meilleur description de la source. La source diffusive n’est plus exclusivement positionnée

en z = lTR, nous lui ajoutons une autre source en z = 0. L’objectif est d’obtenir une

meilleure description des photons diffusés rapidement qui ne se propagent pas jusqu’à la

source principale z = lTR. Le paramètre αds ∈ [0; 1] représente l’amplitude relative des

deux sources (Eq.4.9). Pour αds = 0, on retrouve le modèle de Haskell. Il a été démontré

que ce paramètre est relié à la partie arrière de la fonction de phase p (π) des particules

constituant la suspension. Globalement, plus les particules sont petites, plus le paramètre

de diffusion αds est élevé.

S (ρ = 0, z) = αdsδ (z = 0) + (1 − αds) δ (z = lTR) (4.9)

Après une description du dispositif expérimental, nous apporterons une validation des

deux modélisations de Haskell (Eq.4.7) et à double sources.

4.3 Dispositif expérimental d’acquisition du transport de lu-

mière non-polarisée

Le dispositif utilisé pour l’acquisition du transport de lumière non-polarisée fut dé-

veloppé en coopération avec Julien Mougel (Mougel, 2006), lors de mon stage de DESS

Énergétique et Mécanique Industrielle (Dillet, 2003) et pendant le début de ma thèse.

Il est positionné sur un rhéomètre. Le plan inférieur du rhéomètre est remplacé par une

plaque de verre de manière à éclairer l’échantillon par le bas. Le traitement optique de

cette plaque permet de limiter les réflexions. La source de lumière utilisée est une diode

laser de longueur d’onde λ = 635 nm et de puissance 0, 2 mW . Nous focalisons le laser à

la surface de l’échantillon placé sur la face supérieure de la plaque de verre. La taille du

laser à cette position a un diamètre d’environ 50 µm. Nous observons avec une caméra

CCD la lumière rétrodiffusée.

La théorie développée fait l’hypothèse d’une lumière incidente non-polarisée (polarisée

aléatoirement). Un exemple de lumière non-polarisée est la lumière naturelle du soleil. Nous

choisissons de contrôler l’état de polarisation de la lumière entrante avec un polariseur

circulaire à la sortie du faisceau. Le miroir qui dirige le faisceau vers l’échantillon et

le miroir semi-transparent renvoie la lumière rétrodiffusée sur le détecteur CCD de la
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camera MX12P de marque Adimec qui possède une résolution de 1024×1024 pixels et une

dynamique de 12 bits correspondant à 4096 niveaux de gris. Le rapport signal sur bruit est

supérieur à 60 dB. L’image mesurée représente un carré de 5 mm de côté. L’information

contenue dans cette image est la répartition spatiale d’intensité lumineuse centrée sur

l’impact du laser.

Fig. 4.5 Dispositif expérimentale d’acquisition du transport de lumière non-polarisée

4.4 Validation

La validation du transport stationnaire de lumière non-polarisée à été faite dans la

thèse de Julien Mougel (Mougel, 2006) et dans l’article (Baravian et al., 2005). Ici nous

illustrerons cette validation sur une émulsion d’huile dans de l’eau, nommée Emulsion2,

de rayon moyen 220 nm. Une description précise de l’émulsion sera donnée dans le chap.8

de cette seconde partie.

L’intensité expérimentale réelle Imesurée (ρ) mesurée par la caméra est donnée dans une

unité arbitraire par un nombre de niveaux d’intensité. L’intensité dépend du rendement

quantique du capteur CCD. Nous réaliserons un abus de langage en exprimant l’intensité

mesurée en bits. Nous corrigerons l’intensité mesurée avec le bruit Br (bits) de la caméra.

Le bruit correspond à l’agitation thermique sur les cellules du capteur CCD. L’intensité

du bruit comprise entre 190 et 195 bits, est considérée comme uniforme sur l’ensemble du

capteur CCD. Nous normaliserons l’intensité par le flux total F l (bits.m2) capté par la

caméra. L’Eq.4.10 donne l’expression de l’intensité corrigée et normalisée I (ρ) (m−2).
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4.4 Validation

I (ρ) =
Imesurée (ρ) −Br

F l
avec F l =

∫ ∞

0
[Imesurée (ρ) −Br] 2πρdρ (4.10)

La Fig.4.6 représente la décroissance radiale moyennée sur tous les angles obtenue

avec cette émulsion, à une concentration volumique en huile de 1, 6%. La modélisation

expérimentale des données avec le modèle de Haskell (Eq.4.7) est correcte dans le domaine

ρ ≈ lTR = 0, 524 mm jusqu’à l’infini. Cette limite inférieure de validité correspond au

début de l’approximation de diffusion du modèle. Nous parvenons à mesurer la longueur

de transport avec une précision de 10%. L’ajustement du modèle est réalisé sur quasiment

trois décades d’intensité avec une méthode de moindres carrés.

Fig. 4.6 Modélisation de la décroissance radiale d’intensité. ◦ : Données expérimentales Emul-

sion2 (220 nm à 1, 6%). Ligne continue bleue : Modèle de Haskell Eq.4.7 avec

lTR = 0, 524 mm. Ligne continue rouge : Modèle à double source Eq.4.9 avec

lTR = 0, 54 mm et αds = 0, 17.

La seconde modélisation avec le modèle à double source (Eq.4.9) donne une parfaite

description de l’intensité radiale du spot laser ρ ≈ 0, 075 mm jusqu’à l’infini. Dans la thèse

(Mougel, 2006), il a été observé que les mesures de longueurs de transport du modèle à

double sources sont légèrement supérieures (15%) aux mesures issues du modèle de Haskell.

Dans la suite de ce mémoire, nous utiliserons principalement la modélisation de Has-
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kell (Eq.4.7). Le seul paramètre important de la diffusion dont nous aurons besoin, est

la longueur de transport lTR. Par ailleurs, nous utiliserons la représentation graphique

normalisée I (ρ) .l2TR = f
(

ρ
lTR

)

. Cette représentation universelle se justifie dans le modèle

de Haskell (Eq.4.7). Elle apporte une normalisation de la décroissance spatiale d’intensité

rétrodiffusée qui devient indépendante de lTR pour ρ ∈ [0 ; +∞ [ .

Pour valider le transport de lumière non-polarisée, nous avons réalisé différentes dilu-

tions de Emulsion2 de 66% à environ 1%. La Fig.4.7.a donne l’ensemble des décroissances

radiales d’intensité obtenues expérimentalement. On remarque une excellente superposi-

tion des données dans la représentation normalisée (Fig.4.7.b).

Fig. 4.7 Répartition spatiale d’intensité rétrodiffusée de l’Emulsion2 pour différentes dilutions

(expérimentation). a)Espace réel et b)Représentation normalisée (La ligne continue

est le modèle de Haskell Eq.4.7)
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4.5 Diffusion dépendante

Nous avons récapitulé l’ensemble des valeurs lTR obtenues par ajustement de l’Eq.4.7

dans la Fig.4.8. La validation des mesures expérimentales de la longueur de transport lTR

est effectuée par comparaison aux valeurs théoriques Eq.4.11, où Cscat (x,m) et g (x,m)

sont calculés à partir de la théorie. Nous avons utilisé des indices optique de réfraction de

l’huile Np = 1, 4564 et de l’eau Nm = 1, 33 avec un rayon a = 220 nm obtenu par

mesure granulométrique Malvern MastersizerX. Nous rappelons que lTR est donné parl’

Eq.4.11 avec m = 1, 4564/1, 33 ≈ 1, 1, x = 2π.220.1, 33/635 ≈ 3 soit g (x,m) = 0, 79 et

Cscat (x,m) = 18163 nm2.

lTR (x,m,ϕv) =
4πa3

3ϕvCscat (x,m) (1 − g (x,m))
(4.11)

La confrontation théorie-mesure expérimentale de la longueur de transport lTR est

excellente en milieu dilué où lTR (x,m,ϕv) = 1, 35.10−2/ϕv . En milieu concentré cette ap-

proche n’est plus appropriée car la diffusion dépendante doit être prise en compte (Fig.4.8).

Fig. 4.8 Valiation de lTR pour l’Emulsion2

4.5 Diffusion dépendante

Le régime de diffusion dépendante apparâıt lorsque la distance moyenne entre les

centres diffuseurs (particules) devient proche de la longueur d’onde. Les événements de

dispersion successifs ne sont plus indépendants au niveau électromagnétique. La diffusion
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dépendante peut être estimée avec une approximation du potentiel d’interaction entre les

particules par un potentiel de type sphères dures. Nous utiliserons l’approximation de

Percus-Yevick. La prise en compte de la diffusion dépendante se traduit par l’ajout d’un

terme correctif, le facteur structure S (x, θ) dans les calculs théoriques.

Les opérations de calcul du facteur de structure S (x, θ) pour l’approximation de

Percus-Yevick(Eq.4.18) sont décrites dans l’annexe à la fin de ce chapitre.

La Fig.4.9 montre l’accroissement de l’importance du facteur de structure avec la

concentration. Le facteur de structure converge vers l’unité quand la fraction volumique

φv tend vers 0. Le facteur de structure peut être mesuré en SAXS ou en SANS. L’article

(Rojas-Ochoa et al., 2002) apporte une validation de la variation de la longueur de trans-

port lTR avec la fraction volumique et le facteur de structure.

Fig. 4.9 Facteur de structure S (q) à différentes fractions volumiques

La diffusion dépendante est introduite dans le calcul de la section efficace de disper-

sion Cscat,PY (x,m,ϕv) (Eq.4.12), de la fonction de phase pPY (x,m,ϕv , θ) (Eq.4.13) et du

facteur d’asymétrie optique gPY (x,m,ϕv) (Eq.4.15).
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Cscat,PY (x,m,ϕv) =
λ2

4πN2
m

∫ x

0

(

|S1 (x,m, θ)|2

+ |S2 (x,m, θ)|2
)

Sϕv (x, θ) sin (θ) dθ

(4.12)

pPY (x,m,ϕv , θ) =
(

|S1 (x,m, θ)|2 + |S2 (x,m, θ)|2
)

Sϕv (x, θ)Fnorm,PY (4.13)

avec
1

Fnorm,PY
=
Cscat,PY (x,m, φv)

(

λ
2πNm

)2 (4.14)

gPY (x,m,ϕv) =
1

Cscat,PY (x,m)

λ2

4πN2
m

∫ x

0

(

|S1 (x,m, θ)|2

+ |S2 (x,m, θ)|2
)

Sϕv (x, θ) cos (θ)dθ

(4.15)

Nous allons observer l’influence du facteur de structure S (q) sur trois classes de parti-

cules (des particules petites en approximation de Rayleigh, des particules moyennes x = 2

et des particules grosses x = 20) en milieu dilué et en milieu concentré (20%). La fonction

de phase (fonction normalisée) en milieu dilué (Eq.3.8) est modifiée en milieu concentré par

l’ajout du facteur de structure (Eq.4.13). Cette modification dépend de la taille des parti-

cules. Aucune modification n’est induite pour les petites particules (Rayleigh) (Fig.4.10.a)

et les grosses particules (x = 50) (Fig.4.10.c). L’approximation de Percus Yevick joue un

rôle maximum pour les particules intermédiaires (x = 2) (Fig.4.10.b).

Fig. 4.10 Modification de la fonction de phase avec le facteur de structure S (q) à 20% pour

trois classes de tailles de particule (m = 1.1) a) Petites particule en approximation

de Rayleigh , b) Particules moyennes x = 2 et c) Grosses particules x = 20

L’approximation de Percus Yevick induit également une modification du facteur d’ani-

sotropie optique g (Fig.4.11.a) et de la section efficace de diffusion CScat (Fig.4.11.b) pour
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les fractions volumiques importantes. Pour de grosses particules les modifications sont très

faibles sur g et CScat (Fig.4.11, courbes rouges). Pour des particules en approximation de

Rayleigh, le facteur g est constant (g = 0), mais CScat peux perdre un ordre de grandeur

(courbes bleues). Les tailles intermédiaires cumulent les deux modifications sur g et CScat

(courbes vertes).

Fig. 4.11 Influence du facteur de structure, en fonction de la concentration pour trois classes

de tailles de particule : Rayleigh, x = 2 et x = 20, (a) sur le facteur d’anisotropie

optique, (b) la section efficace de diffusion et (c) le ratio
Cscat,P K(1−gP Y )
Cscat,Mie(1−gMie) .

Les modifications apportées au facteur d’anisotropie optique g et à la section efficace de

diffusion CScat provoquent un changement important du produit CScat (1 − g) (Fig.4.11.c).

La longueur de transport lTR étant inversement liée à ce facteur, elle est d’autant plus

modifiée que les particules sont petite et/ou que la concentration est élevée.

4.6 Conclusion

Le but de ce chapitre a consisté à valider la mesure de la longueur de transport. Nous

avons modélisé les décroissances radiales expérimentales d’intensité avec le modèle de Has-

kell (Eq.4.7). Le paramètre d’ajustement, la longueur de transport lTR, est déterminé de

façon robuste avec une précision inférieure à 10%. Nous avons confronté avec succès les

mesures expérimentales d’une émulsion d’huile dans de l’eau avec des données théoriques

calculées à partir de la théorie de Mie.

Lors de la validation sur l’émulsion, nous avons distingué deux régimes différents de

diffusion : le régime de diffusion non-dépendante et le régime de diffusion dépendante. ce

dernier régime apparâıt lorsque la distance entre les centres diffuseurs est de l’ordre de

grandeur de la longueur d’onde. Cette diffusion dépendante peut-être prise en compte par
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l’ajout du facteur de structure, notamment dans l’approximation de Percus-Yevick S (q).

La longueur de transport est une fonction des trois paramètres que sont la taille x,

le rapport des indices optiques de réfraction m et la concentration volumique φv. Si nous

connaissons deux de ces trois paramètres, une mesure expérimentale conduit par l’inver-

sion de la théorie de Mie (avec ou sans la correction de Pecus Yevick) à une mesure du

troisième. La thèse de julien Mougel (Mougel, 2006) détaille deux applications (émulsifi-

cation et vieillissement d’émulsions-gel) où connaissant la concentration et les propriétés

optiques, nous sommes capables de mesurer la taille volumique moyenne des émulsions à

partir de la longueur de transport lTR.

Le transport stationnaire incohérent de lumière non-polarisée (Energie) apporte une

information sur le milieu diffusant : la longueur de transport lTR. L’image rétrodiffusée

est auto-suffisante à sa détermination. Aucun étalon de réflectance n’est utile. La mesure

est rapide et peut être réalisée sur un échantillon statique ou sous écoulement.

Nous montrerons dans la suite du mémoire que le transport de polarisation de la lumière

apporte d’autres informations. La polarisation de la lumière permettra de discriminer

un second paramètre sur les trois (taille, fraction volumique et rapport d’indice). Nous

exposerons dans le prochain chapitre le dispositif expérimental d’acquisition du transport

incohérent stationnaire de lumière polarisée.
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Annexe : Facteur de Structure

Nous détaillons dans cette annexe les étapes de calcul du facteur de structure en ap-

proximation de Percus-Yevick (Tsang et al., 2000).

L’Eq.4.16 définit les variables suivantes β, ν et γ.

β = 100000

ν = β + φv

ϕv−1

γ = ϕv(1+ϕv/2)
3(1−ϕ2

v)

(4.16)

Puis les variables utiles c1 , c2 et c3 avec l’Eq.4.17.

c1 = ϕv

1−ϕv

c2 = 1 − 6
(

ν −
√

ν2 − γ
)

− 3c1

c3 = 3 − 6
c1

(

ν −
√

ν2 − γ
)

(4.17)

Le facteur de structure est alors donné par les Eq.4.18.



























Sϕv (0) =
{

c1

[

4 − 6
ϕv

(

ν −
√

ν2 − γ
)

+ 3c1

]

+ 1
}−2

Sϕv (q) =

[

(

3c1
sin(q)−q cos(q)

q2 + sin (q)
)2

+
(

3c1c2
sin(q)−q cos(q)

(q)3
+ c1c3

sin(q)
q + cos (q)

)2
]

(4.18)

où q = 2x sin (θ/2).
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Chapitre 5

Mesure du transport de

polarisation

Le chapitre précédent nous a montré que le transport d’énergie de la lumière (gran-

deur scalaire) était porteur d’une information caractérisée par la longueur de transport

lTR. La lumière n’est pas seulement une grandeur scalaire, elle se définit également par une

grandeur dite vectorielle donnée par son état de polarisation. Ainsi depuis une quinzaine

d’années des études se sont focalisées sur le transport de polarisation d’une onde lumineuse

lors du mécanisme de diffusion.

Pour réaliser notre propre étude de transport de polarisation et vérifier sa pertinence

à la caractérisation physique des suspensions, nous avons mis en oeuvre un dispositif ex-

périmental d’acquisition.

Ce chapitre débutera par une introduction du transport incohérent de polarisation en

milieu aléatoire, accompagné d’un point bibliographique sur les études déjà réalisées. La

suite du chapitre sera consacrée à la description du dispositif expérimental. Nous donnerons

une description complète des éléments constituants le dispositif. Ensuite nous expliquerons

son fonctionnement en développant le principe de générateur et d’analyseur de polarisation.

Nous terminerons par une description de la calibration du dispositif et de la représentation

des images obtenues.
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Chapitre 5. Mesure du transport de polarisation

5.1 Le transport de polarisation ; Point bibliographique

Lorsqu’une onde lumineuse recontre une particule, son intensité est dispersée dans tout

l’espace autour de celle-ci. En se positionnant au niveau d’une particule, nous montrerons

que la polarisation de l’onde dispersée lors d’un événement de dispersion dépend à la fois

de la direction dans l’espace, de la taille de la particule, des indices de réfraction, de la

longueur d’onde et de l’état de polarisation de l’onde incidente. L’étude du transport de

polarisation consiste à étudier comment la polarisation incidente de l’onde lumineuse est

modifiée lors des événements successifs de dispersion. Nous utiliserons ce transport de po-

larisation pour extraire de nouvelles informations physiques sur les suspensions.

Le principe expérimental d’acquisition du transport de polarisation est décrit dans la

Fig.5.1. Comparé au dispositif de transport de lumière non-polarisée détaillé précédemment

Fig.4.5, une sélection de l’état de polarisation peut-être effectuée en entrée (source) ou en

sortie (détecteur) du milieu diffusant.

Fig. 5.1 Principe de mesure du transport de polarisation

5.1.1 Historique sur la visualisation des effets de polarisation

Depuis les années 1990, des recherches spécifiques ont été réalisées sur le transport

stationnaire de polarisation dans les milieux diffusants. En 1992, (Schmitt et al., 1992)

mesurent les premiers effets de polarisation dans des solutions de sphères monodisperses

(0, 22 µm, 0, 48 µm, 1, 03 µm et 2 µm de diamètre) de polystyrène suspendues dans de

l’eau. L’étude est réalisée en état stationnaire et en transmission à travers des épaisseurs

finies. L’onde incidente de polarisation circulaire est focalisée à la surface de l’échantillon

puis diffusée dans l’échantillon. L’intensité transmise est recueillie par une caméra de

deux manières, soit directement soit à travers un analyseur de polarisation circulaire. Ils

montrent que la taille des particules modifie le transport de lumière polarisée : plus les

particules sont grosses, plus l’effet de polarisation est réduit. Les mesures expérimentales
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du transport stationnaire de polarisation sont confrontées avec des simulations de Monte

Carlo utilisant la théorie de Mie. Ils montrent la modification de l’intensité transmise

pour différentes épaisseurs de milieu (3 lTR, 5 lTR, 8 lTR et 10 lTR). Plus l’épaisseur de

l’échantillon traversée est importante plus le rapport entre l’intensité circulaire transmise

et l’intensité totale transmise et faible. Le transport de lumière par diffusion multiple,

s’accompagne d’une perte progressive de la polarisation circulaire de l’OEM.

Dogariu et Asakura (Dogariu et Asakura, 1997) réalisent une étude semblable à l’ex-

périmentation décrite précédemment en choisissant une polarisation d’entrée linéaire et

une polarisation de sortie linéaire, perpendiculaire à la polarisation incidente. Différentes

concentrations de sphères de polystyrène (0, 4µm) sont utilisées. Les images transmises

présentent alors des profils d’intensité sous forme de croix Fig.5.2. Les amplitudes des va-

riations angulaires d’intensité (Imax − Imin) / (Imax + Imin) apparaissent comme des fonc-

tions de la longueur de transport lTR.

Fig. 5.2 Image en fausse couleur de 5 mm de coté obtenue pour une polarisation incidente

linéaire horizontale et une polarisation de sortie linéaire verticale

Simultanément à ces recherches des équipes (Anderson, 1991) (Jacques et al., 1992)

se sont intéressées au transport de polarisation dans les tissus vivants pour localiser des

cellules dégénérées.

Plus récemment des études de polarisation se sont développées sur les analyses tempo-

relles des fluctuations d’intensité, les speckles. Les études abordent la décroissance tempo-

relle d’intensité des speckles polarisés issus d’un pulse de lumière. Cette technique apparâıt

comme une continuité des études de DLS et DWS déjà citées dans la première partie sur la

caractérisation des suspensions. La publication (Dogariu et al., 1997) apporte une mesure

expérimentale de la dépolarisation temporelle des speckles en géométrie de rétrodiffusion
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pour des suspensions de microsphères de polystyrène de 5% à 54%. Nous observons alors

que la décroissance d’intensité est fonction de la concentration en microsphères. Avec le

même sytème de microsphères, Wang et al. (Wang et al., 2003) donnent des mesures de dé-

polarisation en transmission. Les mesures effectuées avec deux polarisations incidentes dif-

férentes (linéaire et circulaire) sont confrontées à des simulations de Monte Carlo. D’autres

études (Elies et al., 1996) (Elies et al., 1997) abordent des mesures de dépolarisation en

fonction de l’angle entre l’onde incidente à la surface de l’échantillon.

Les études exposées dans ce paragraphe montrent que la polarisation d’une onde lu-

mineuse est transmise à travers les événements successifs de dispersions. Les effets de

polarisation diminuent lors de la propagation mais ils restent visibles à de longues dis-

tances (plusieurs millimètres). Il semble que ces effets soient liés aux propriétés physiques

des suspensions que sont la concentration et à la taille des particules. De plus les simula-

tions de Monte Carlo semblent une méthode pertinente d’analyse.

5.1.2 Matrice de Mueller

A la fin des années 1990, Hielscher et al. (Hielscher et al., 1997) développent le concept

de matrice de Mueller d’un milieu diffusant. Cette matrice se compose de seize images 2D

et traduit la totalité des interactions du milieu avec l’onde électromagnétique

(Fig.5.3). Elle correspond à une matrice de passage qui permet de déterminer le champ

électrique de sortie Es pour un champs électriques quelconques incidents Ei en tout point

du plan de rétrodiffusion (Eq.5.1). Elle est obtenue par combinaison des différentes images

acquises pour quatre polarisations sources et quatre polarisations d’analyse différentes.

Dans notre étude, la matrice de Mueller est donnée pour une source ponctuelle en géomé-

trie de rétrodiffusion.















〈|E‖,s|
2 + |E⊥,s|

2〉
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2 − |E⊥,s|

2〉
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
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
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


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


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










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2〉
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2〉
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i〈Ē‖,iE⊥,i −E‖,i
¯E⊥,i〉















(5.1)

L’élément M11 de la matrice représente le transport d’énergie, étudié dans

le chapitre précédent. Les autres éléments de la matrice caractérisent la pro-

pagation des effets de polarisation de la lumière.

Hielscher et al. (Hielscher et al., 1997) font état d’une modification de la matrice

pour différentes tailles de sphères de polystyrène. L’acquisition de ces premières matrices
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de Mueller rétrodiffusées (Fig.5.3.a) sont réalisées par une modification des polarisations

incidentes et résultantes avec des polariseurs linéaires et des lames quart d’onde. Cette

technique expérimentale est reprise par (Wang et al., 2003).

Fig. 5.3 Comparaison entre une matrice de Mueller Expérimentale (b) d’une suspensions de

sphères de polystyrène de 204 nm et sa matrice de Mueller théorique (a) obtenue par

simulation de Monte Carlo. Cet exemple est extrait de l’article (Bartel et Hielscher,

2000)

La sélection des états de polarisation peut également être contrôlée électriquement avec

l’utilisant de lame composée de cristaux liquides (LCR : Liquid Cristal Retarder) (Baba

et al., 2002), (Bueno, 2002), (Nezhuvingal et al., 2003).

Suite à l’observation des matrices de Mueller, différentes équipes ont cherché à déve-

lopper un modèle semi-analytique à deux événements de dispersion (Rakovic et Kattawar,

1998) (Wang et Wang, 2002) ou des simulations de Monte Carlo (Bartel et Hielscher, 2000)

(Fig.5.3.b) (Wang et Wang, 2002) (Yang et al., 2003) pour modéliser les observations ex-

périmentales. Bartel et Hielscher (Bartel et Hielscher, 2000) valident la dépendance de la

matrice de Mueller avec la taille moyenne des objets diffusants. Les articles de (Yang et al.,

2003) et de (Wang et Wang, 2002) illustrent respectivement la dépendance avec la forme

des objets et la biréfringence de la phase continue. Nous reprendrons les études menées

dans ces articles dans les deux prochains chapitres.

En conclusion, l’ensemble des références citées montre une modification des effets de

polarisation pour des particules diffusantes de différentes tailles et de différentes concen-

trations. Nous souhaitons dans cette thèse poursuivre ce travail en tentant de déduire des

informations (taille et concentration) à partir de la matrice de Mueller. Nous avons donc
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développé un dispositif faisant l’acquisition rapide des images 2D rétrodiffusées avec un

contrôle électrique des états de polarisation. Le dispositif de diffusion sera positionné sous

un rhéomètre pour rendre possible la mise sous écoulement de la solution étudiée. L’étude

sous cisaillement et en continue est une innovation importante. Aucune des références bi-

bliographiques mentionnées précédemment ne fait l’objet d’un suivit continu d’un système

en mouvement ou en évolution (changement de ces paramètres physiques : taille, concen-

tration ou orientation).

5.2 Description du dispositif expérimental

Le dispositif développé constitue un important perfectionnement du dispositif de dif-

fusion multiple de lumière non-polarisée déjà présenté (Fig.4.5). Le principe de ce premier

instrument repose sur une focalisation d’une source laser non polarisée à la surface d’un

échantillon et sur l’acquisition de l’image rétrodiffusée par ce milieu via une caméra CCD.

La particularité du nouveau dispositif porte sur une sélection des états de polarisation

de la lumière aussi bien au niveau de la source laser que de l’acquisition d’image. La

description des éléments constituants le dispositif , présenté dans la Fig.5.4 et schématisé

dans la Fig.5.5 est la suivants :

Fig. 5.4 Photographie du dispositif expérimental

La source : Diode laser (D.L) et son optique de focalisation (O.) : L’ensemble a

été acheté chez Laser 2000 SAS. La diode laser alimentée par le secteur ou par quatre

piles de 1, 5 V fournit une puissance de 5 mW avec une stabilité de l’ordre de 1%

à 635 nm. Le système de focalisation réduit la taille du faisceau laser à 75 µm de
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Fig. 5.5 Schéma du dispositif expérimental avec D.L. : Diode Laser ; O. : Optique ; L. : Po-

lariseur linéaire ; R. : Retardeur à cristaux liquide ; M. : Miroir ; M.S. : Miroir semi-

transparent, C. : Caméra CCD, V. Vitre et S. Échantillon

rayon à une distance de 20 cm. La Fig.5.6 illustre la décroissance d’intensité pour

la mesure du rayon du faisceau sur une tache d’encre de Chine par ajustement de

l’équation d’une gaussienne (Eq.5.2 où Br correspond au bruit de la caméra et F l

au flux rétrodiffusé).

I =
IMax

Fl

(

exp

(

−

(

ρ

Rlaser

)2
)

+ Br

)

(5.2)

Fig. 5.6 Faisceau laser de Rlaser = 75 µm avec Bruit = 193, 6 Bits et F lux = 2290 Bits/mm−2

Polariseur linéaire (L.) : Les filtres de Melles Griot et Aries ont un bon pouvoir d’ex-

tinction. Deux polariseurs parfaitement perpendiculaires ne laissent passer que 1

pour 10 000 de l’intensité incidente.

DILLET Jérôme 81
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LCR, Retardeurs à cristaux liquide (R.1, R.2, R.3 et R.4) : Ils sont fournis par

Meadowlark, un LCR peut induire un déphasage de 0 à 2π à 635 nm par simple

modification de sa tension d’alimentation (de 0 à 6V ). Les LCRs sont utilisés pour

changer rapidement et électriquement les états de polarisation. Ils ont un faible

coefficient d’absorption (inférieur à 5%). Chaque LCR est caractérisé par sa propre

courbe d’étalonnage qui traduit le déphasage en fonction de la tension. La Fig.5.7

présente la courbe d’étalonnage du LCR4.

Fig. 5.7 Calibration LCR4 de Meadowlark

Miroir : Le miroir de Micro-Controle est un miroir à maintient de polarisation à 1% près

pour un angle d’incidence de 45◦ à 635 nm. Il dirige le faisceau laser dans l’échan-

tillon.

Miroir semi-transparent : Cet élément acheté chez Melles Griot est dit à 50/50 : il

transmet 50% de l’intensité lumineuse et réfléchit le reste soit 50%. La polarisation

est conservée à 1% près pour une réflexion avec une incidence de 45◦.

Caméra CCD La caméra MX12P de Adimec possède un capteur CCD de 1024 × 1024

pixels en 12 bits de niveau de gris. Elle est connectée à un pc via une carte d’acqui-

sition ayant une vitesse de transfert de 100 Mo/s qui permet d’obtenir une vitesse

d’acquisition de 30 images/s. L’objectif de la caméra a une focale de 75 mm de

marque Tameron. Pour observer un plan de diffusion d’un centimètre de coté situé

à 15 mm nous avons ajouté 75 mm de bague allonge.

Vitre d’observation : Cette vitre fournie par Melles Griot supporte l’échantillon. Elle
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est traitée anti-reflet à 635 nm et possède une épaisseur de 10 mm afin de diminuer

les réflexions parasites.

Les éléments du dispositif sont positionnés sur un rail optique via des chariots de

fixation. Pour ajuster les éléments optiques à la hauteur du faisceau laser, nous avons

commandé différents supports en métal. L’ensemble des supports de fixation ont été usinés

par l’atelier de mécanique de l’École Nationale Supérieure d’Électronique et de Mécanique.

Une grande difficulté du réglage du dispositif consiste à faire disparâıtre les réflexions di-

rectes arrivant sur le capteur CCD. Pour ce faire, nous désaxons légèrement dans le plan

horizontale la caméra, le miroir et la lame semi-transparente.

Le dispositif est placé à l’intérieur d’un rhéomètre Physica MCR300 et dont le châssis

à été usiné spécialement par la société Anton-Paar. Nous aurons ainsi la possibilité d’étu-

dier des échantillons mis en cisaillement par l’intermédiaire d’une géométrie positionnée

au-dessus de l’échantillon. Le rhéomètre offrira ainsi la possibilité de mesurer les propriétés

mécaniques de l’échantillon simultanément à la caractérisation optique. Nous disposons de

deux géométries adaptables sur le rhéomètre : une géométrie plane en verre de 5 cm de

diamètre (épaisseur 1 cm) construite par nos soins et une géométrie à six ailettes de 22 mm

de diamètre.

L’avantage important de ce dispositif réside dans le contrôle électrique de la polarisa-

tion incidente et de la polarisation de sortie. L’acquisition de la caméra et le contrôle des

LCRs sont synchronisés avec un PC. En collaboration avec Alan Delconte, ingénieur au

laboratoire Lemta, nous avons programmé un logiciel d’acquisition et de visualisation des

Matrices de Mueller en Delphi pour donner à ce dispositif une facilité d’utilisation. Entre

l’envoi des consignes de tension des LCR et le début de l’acquisition d’image, nous intro-

duisons un temps de stabilisation d’environ 50 ms. Ce temps de stabilisation, préconisé par

le constructeur, correspond à la stabilisation des cristaux liquides lorsqu’ils sont soumis à

une tension. L’acquisition des seize images pour construire une matrice de Mueller peut

être réalisée en environs une seconde, puis une seconde est nécessaire pour enregistrer les

images sur le disque dure.

5.3 Principe : Générateur & Analyseur

La détermination des seize éléments de la matrice de Mueller expérimentale nécessite

l’envoi de quatre états de polarisation incidents (Si, ’Générateur’) et l’analyse de chacun

DILLET Jérôme 83
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d’entre eux par quatre états de polarisation de sortie (Ss, ’Analyseur’). Les quatre pola-

risations de l’analyseur et du générateur sont nécessairement une linéaire (horizontale ou

verticale), une oblique (+45◦ ou −45◦), une circulaire (droite ou gauche) et un au choix

parmi les restantes.

La juxtaposition d’un polariseur linéaire et deux lames retardeurs à cristaux liquides

permet de générer ou d’analyser toutes les polarisations de la lumière. Une simple modifi-

cation des tensions d’alimentation des retardeurs permet de sélectionner rapidement l’état

de polarisation souhaité (linaire et circulaire).

Fig. 5.8 Schéma du générateur avec D.L. : Diode Laser ; O. : Optique ; L. : Polariseur linéaire

vertical et R. : Retardeur à cristaux liquide

Le générateur (Fig.5.8) est constitué d’un polariseur linéaire vertical suivi de deux

LCRs de diamètre 8 mm. L’orientation des LCRs est repérée par l’angle (Sens trigono-

métrique dans le sens de propagation de la lumière) entre l’axe vertical (Référence 0◦) et

l’axe rapide du LCR. Le LCR N̊4 a une orientation nulle (axe rapide vertical) et le second

est positionné avec un angle de 45◦. En appliquant deux déphasages nuls sur les deux

LCR, nous n’obtenons aucune modification de la polarisation, nous nous retrouvons par

conséquent avec une polarisation linéaire verticale. Si l’on change le déphasage du premier

LCR, le LCR N ◦4 à π l’onde est déphasée et passe de la polarisation linéaire verticale à la

polarisation linéaire horizontale. De même un déphasage de π/2 sur ce LCR transforme la

polarisation verticale en une polarisation circulaire. Le second LCR, le LCR N ◦3 ne joue

son rôle de retardeur que pour obtenir une polarisation linéaire oblique (45◦). Si les deux

LCRs ont pour déphasage π/2, la polarisation verticale est transformée en une polarisation

linéaire inclinée de 45◦. L’insertion d’un déphasage de 3π/2 à la place de π/2 sur le LCR

N◦4 provoque un changement du sens de rotation de la polarisation circulaire et du sens

d’inclinaison de la polarisation à 45◦.
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L’analyseur et le générateur sont composés de deux milieux biréfringents (LCRs) et

d’un polariseur linéaire. La matrice de Mueller d’un polariseur linéaire L(θ) orienté d’un

angle θ est donnée par l’Eq.5.3, (Bohren et Huffman, 1983). Pour un milieu biréfringent

T (θ, δ) orienté d’un angle θ utilisé avec un déphasage δ, la matrice est donnée par l’Eq.5.4,

(Fuller, 1995).

L(θ) =















1
2

1
2 cos(2θ) 1

2 sin(2θ) 0
1
2 cos(2θ) 1

2 cos2(2θ) 1
2 cos(2θ) sin(2θ) 0

1
2 sin(2θ) 1

2 cos(2θ) sin(2θ) 1
2 sin2(2θ) 0

0 0 0 0















(5.3)

T (θ, δ) =














1 0 0 0

0 cos2(2θ) + sin2(2θ)2 cos(δ) sin(2θ) cos(2θ)(1 − cos(δ)) − sin(2θ) sin(δ)

0 sin(2θ) cos(2θ)(1 − cos(δ)) sin2(2θ) + cos2(2θ) cos(δ) cos(2θ) sin(δ)

0 sin(2θ) sin(δ) − cos(2θ) sin(δ) cos(δ)















(5.4)

L’état de polarisation du faisceau lumineux issu de la diode laser après le polariseur

linéaire verticale est donné par le vecteur de Stokes transposé (1100)T . La lettre T est

utilisé pour noter la transposé d’un vecteur ou d’une matrice.

L’équation Eq.5.5 permet le calcul des vecteurs de Stokes constituants le générateur,

Tab.5.1. δ3i et δ4i sont respectivement les déphasages du LCR N̊3 et du LCR N̊4

Gi(δ
3
i , δ

4
i ) = T (0, δ3i )T.(−

π

4
, δ4i ).















1

1

0

0















(5.5)

État i I II III IV V VI

Déphasage δ4i 0 π 3π/2 π/2 3π/2 π/2

δ3i 0 0 π/2 π/2 0 0

Stokes

Gi















1

1

0

0





























1

−1

0

0





























1

0

1

0





























1

0

−1

0





























1

0

0

1





























1

0

0

−1















Tab. 5.1 Stokes générateur associés au déphasage des LCR N̊4 et N̊3

DILLET Jérôme 85
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L’analyseur (Fig.5.9) est composé des éléments identiques au générateur avec la par-

ticularité d’être positionnés dans l’ordre inverse. Afin d’observer des images de l’ordre du

centimètre, les LCRs ont un diamètre de 20 mm. L’expression théorique des vecteurs de

Stokes de l’analyseur est donnée par l’Eq.5.6. Nous remarquons la présence d’un signe

négatif devant δ1
j qui traduit le positionnement du LCR N̊1 dans le sens opposé de la

direction de propagation de la lumière. En effet les deux LCRs de l’analyseur sont placés

’dos à dos’ pour minimiser l’encombrement du aux alimentations des LCRs. Les vecteurs

de Stokes théoriques résultants sont donnés dans le tableau Tab.5.2.

Fig. 5.9 Schéma de l’analyseur avec O. : Optique ; L. : Polariseur linéaire ; R. : Retardeur à

cristaux liquides et C. : CCD Caméra

Aj(δ
1
i , δ

2
i ) =

(

1 1 0 0
)

.T (
π

4
,−δ1j ).T (0, δ2j ) (5.6)

État déphasage Stokes

j δ1i δ2i Aj

I 0 0 ( 1 1 0 0 )

II π 0 ( 1 -1 0 0 )

III π/2 π/2 ( 1 0 1 0 )

IV 3π/2 π/2 ( 1 0 -1 0 )

V 3π/2 0 ( 1 0 0 1 )

VI π/2 0 ( 1 0 0 -1 )

Tab. 5.2 Stokes analyseur associés au déphasage des LCR N̊1 et N̊2

Pour obtenir la matrice de Mueller 2D expérimentale, nous devons faire l’acquisition

des seize images 2D d’intensité Ii,j obtenues pour quatre états distincts de polarisation

incidente Gi et pour quatre états distincts de polarisation en sortie Aj . La relation matri-

cielle entre les éléments est construite dans le sens inverse de propagation de la lumière. La
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matrice intensité d’images I est donnée par la relation Ii,j = Aj .M.Gi. La juxtaposition

en colonne des états de polarisation Gi permet de former la matrice 4 × 4 générateur G.

La juxtaposition en ligne des états de polarisation Aj permet de former la matrice 4 × 4

analyseur A. L’équation matricielle de la matrice intensité I est donnée par l’Eq.5.7 où M

est la matrice de Mueller du milieu diffusant.

I = A.M.G (5.7)

La matrice de Mueller expérimentale est donnée par l’Eq.5.8 qui est une simple inversion

de l’Eq.5.7. Tous les éléments de la matrice de Mueller sont des combinaisons linéaires des

éléments de la matrice intensité.

M = A−1.I.G−1 (5.8)

5.4 Mise en place du dispositif

La mise en place du dispositif nécessite de prendre un certain nombre de précautions

sur le positionnement et l’orientation de l’ensemble des éléments optiques avant de réaliser

une procédure de calibration. L’alignement et la calibration sont réalisés en positionnant

un miroir à réflection totale en lieu et place du milieu diffusant (Fig.5.10.a).

5.4.1 Recherche d’un axe de référence

Les éléments optiques sont fixés sur un rail optique. La première étape consiste à recher-

cher un axe de référence de verticalité par rapport au rail optique supportant l’ensemble

des éléments.

Pour ce faire nous avons positionné un polariseur linéaire sur une platine de rotation

précise au 1/100ième de degré achetée chez Opton-Laser. Nous fixons la platine sur le rail

entre une source lumineuse (Diode laser) et une photodiode qui permet de mesurer l’in-

tensité transmise (Fig.5.10).

L’intensité transmise à travers le polariseur linéaire 1 aligné verticalement est identique

que celui-ci soit positionné en position recto ou en position verso, Fig.5.10. La recherche de

la position verticale s’effectue par tâtonnement avec des modifications successives fines de

l’alignement du polariseur linéaire 1. La précision finale obtenue est de l’ordre du 1/10 ième

de degré. La platine avec le polariseur en position verticale constitue l’axe de référence.
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Fig. 5.10 Axe de référence vertical

5.4.2 Positionnement des polariseurs linéaires

5.4.2.1 Polariseur d’entrée

Nous cherchons à positionner le polariseur d’entrée 2 du générateur en position verti-

cale. La première solution consiste à positionner le polariseur linéaire 2 derrière la platine

de rotation 1 puis de rechercher par rotation manuelle du polariseur 2 le maximum d’in-

tensité transmise correspondant à l’alignement des deux polariseurs. Il est peu précis de

déterminer une maximum d’intensité. Les faible fluctuation d’intensité de la diode et les

quelques poussières présentes sur les éléments optiques suffisent à perturber grandement

les mesures.

Pour substituer ce problème, nous choisissons d’inverser le polariseur d’entrée 2 et la

platine de rotation 1 (Fig.5.11.a). Ensuite nous effectuons un tour complet 0 ≤ β ≤ 360◦

avec la platine 1 discrétisé en 180 pas avec une prise de mesure de l’intensité transmise.

L’acquisition de l’intensité lumineuse et le pilotage de la platine de rotation sont syn-

chronisés via un PC. L’intensité I(β) est donnée en théorie par la première composante

S0 de la relation matricielle Eq.5.9. L’ajustement des mesures d’intensité avec la fonction

cosinus carré par la méthode des moindres carrés (Fig.5.11.b) conduit à la détermina-

tion d’un déphasage αv représentant l’écart d’alignement du polariseur 2. Si le déphasage

trouvé n’est pas nul, nous modifions manuellement l’alignement du polariseur linéaire 2

puis nous effectuons une nouvelle acquisition d’intensité en réalisant tour complet de la

platine. Par tâtonnement successif, l’axe de verticalité est trouvé avec une précision infé-

rieure à 5/100ième de degré.
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Fig. 5.11 a) Alignement du polariseur d’entrée. b) Intensité transmise par deux polariseurs

linéaires 1 et 2 en fonction de l’orientation β du polariseur 2















I(β)

. . .

. . .

. . .















= L1(αv).L2(β).















1

1

0

0















I(β) ∝ (cos (β − αv))
2 (5.9)

5.4.2.2 Polariseur de sortie

L’alignement du polariseur de sortie est réalisé sur le même principe que l’alignement

du polariseur d’entré Fig.5.12.
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Le miroir et la lame semi-transparente ne sont pas parfaitement alignés afin d’ôter les

réflexions parasites. Il en suit une modification du plan de polarisation vertical entre la

position générateur et la position analyseur. Ce léger changement doit être pris en compte.

La recherche de l’axe de référence de la platine de rotation 1 en position analyseur (après

les trois réflexions miroir, miroir et lame semi-transparente) est alors obligatoire.

Dans un premier temps nous recherchons la position de référence de la platine 1 pour

une orientation verticale en position de sortie. Le polariseur linéaire 2 est laissé devant la

diode laser (position entrée) et nous mesurons le déphasage de la platine de rotation po-

sitionnée devant la photodiode (position sortie). Le déphasage obtenu par un ajustement

de la fonction cosinus carré (Eq.5.9) sur un tour complet correspond à la seconde position

de référence de la platine 1.

Dans un second temps nous ôtons le polariseur d’entrée 2 puis nous alignons le po-

lariseur de sortie 3 par rapport à la platine de rotation 1 selon le schéma Fig.5.12. La

procédure d’alignement est identique à l’alignement du polariseur d’entrée.

Fig. 5.12 Alignement du polariseur de sortie 3

5.4.3 Références de la lame quart d’onde

Une lame quart d’onde d’ordre multiple en mica de chez Melles Griot est fixée sur

une deuxième platine de rotation identique à la première platine. Cette lame quart d’onde

est primordiale pour la calibration du dispositif. Positionnée à 45◦ derrière un polariseur

linéaire, elle permet la sélection d’une polarisation circulaire. Une lame quart d’onde Q

avec une orientation αλ/4 est un milieu biréfringent avec un déphasage de π/2, Eq.5.10.
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Q(αλ/4) = T (αλ/4,
π

2
) (5.10)

L’alignement de la lame quart d’onde s’effectue entre deux polariseurs parallèles ou

perpendiculaires, Fig.5.13. L’intensité mesurée est ajustée avec l’expression Eq.5.11 pour

déterminer l’angle αλ/4. Cet angle correspondant à l’angle entre la verticale et l’axe à 45◦

de l’axe rapide de la lame quart d’onde. Nous réalisons cette recherche de référence en

position analyseur puis en position générateur.















I(αλ/4)

. . .

. . .

. . .















=
(

1 1 0 0
)

.Q(αλ/4).


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





1
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0
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









I
(

αλ/4

)

∝ 1 −
(

cos
(

2αλ/4

))2
(5.11)
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Fig. 5.13 Intensité transmise par une lame quart d’onde entre deux polariseurs perpendiculaires

5.4.4 Les difficultés de calibration du générateur et de l’analyseur

La calibration du dispositif a constitué une longue réflexion. Les Différents protocoles

expérimentaux testés sont explicités dans cette section.
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5.4.4.1 Étalonnage des retardeurs à cristaux liquides

La démarche prévue consistait à utiliser les valeurs de tension issues des courbes de

calibration données par le constructeur. Les courbes devaient nous permettre de déduire

les valeurs de tensions correspondantes aux déphasages pour former une base générateur

Tab.5.1 et une base analyseur Tab.5.2. Nous nous sommes rapidement aperçus que le choix

des tensions n’était pas optimum. Les polarisations issues du générateur étaient très éloi-

gnées des polarisations usuelles linéaires et circulaires prévues.

Désireux de vérifier les étalonnages effectués chez Meadowlark, nous avons re-mesuré

les quatre courbes de déphasage en fonction de la tension d’alimentation. Le LCR est placé

entre deux polariseurs linéaires parallèles verticaux. Puis nous mesurons avec la photodiode

la variation d’intensité transmise en fonction de la tension. L’intensité est traduite en dé-

phasage via l’Eq.5.13 ILCRmin correspond au minimum de l’intensité mesurée et ILCRmax

correspond à l’intensité incidente reçue par le LCR soit le maximum de l’intensité trans-

mise. L’expression théorique du déphasage trouvée résulte de l’Eq.5.12 obtenue à partir

de la matrice théorique d’un milieu biréfringent.















I(δ)

. . .

. . .

. . .















= L(0).T (0, δ).L(0).















1

1

0

0















I(δ) ∝ sin (2δ)2 (5.12)

δ = 2arcsin

(

(

I − ILCRmin

ILCRmax − ILCRmin

)
1

2

)

(5.13)

Les calibrations ainsi obtenues montrent des différences avec l’étalonnage du construc-

teur comme observé sur la Fig.5.14. En fait une petite variation du positionnement du

LCR se traduit par une modification de l’angle d’impact du faisceau laser et conduit à

une modification non négligeable de sa réponse. Il est pour nous impossible de diminuer

cette incertitude de positionnement car les LCRs ne possèdent pas un support de fixation

adéquat. Ils ne peuvent être fixés qu’avec une seule vis sur moins d’un tour de pas de vis.
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Fig. 5.14 Comparaison entre notre calibration réalisée sur le rail optique et la calibration du

constructeur Meadowlark

Nous avons choisi les états I,II,VI et IV (Tab.5.1) pour former la base générateur ins-

crite dans Eq.5.14 et les états I,II, V et IV (Tab.5.2) pour former la base analyseur Eq.5.15.

G =















1 1 1 1

1 −1 0 0

0 0 0 −1

0 0 −1 0















(5.14)

A =















1 1 0 0

1 −1 0 0

1 0 0 −1

1 0 1 0















(5.15)

La vérification de la conformité du dispositif est réalisée sur la mesure de la matrice

de Mueller de l’air qui est la matrice identité donnée par l’Eq.5.16.

Mair =















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1















(5.16)

Malgré les calibrations des LCRs en position expérimentale, la mesure de la matrice de

Mueller de l’air est restée très médiocre. Nous avions une erreur moyenne d’intensité sur
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les seize éléments de l’ordre de 6% en moyenne avec une erreur maximale de 20%. Nous

avons donc continué à chercher à améliorer la technique de calibration.

5.4.4.2 Bases générateur et analyseur réelles

L’objectif fut alors de mesurer précisément les vraies composantes des vecteurs de

Stokes issues du générateur avec un analyseur idéal constitué par les deux platines de

rotations. La même démarche fut développée avec un générateur idéal pour mesurer les

composantes réelles des vecteurs de Stokes de l’analyseur. Une fois l’ensemble des mesures

effectuées, aucune amélioration sur la mesure de la Matrice de Mueller de l’air ne fut ob-

servée que l’on ait choisi comme base générateur et analyseur les vecteurs idéaux théorique

ou les vecteurs mesurés. En conclusion à cette longue période de test, nous avons choisi

de ne plus chercher à corriger le générateur et l’analyseur mais à trouver leurs optimums.

5.4.5 Recherche des optima générateur et analyseur

Pour une bonne utilisation, il a été vérifié qu’il était préférable d’envoyer et d’analyser

des vecteurs de Stokes les plus proches des vecteurs de Stokes idéaux. Ces vecteurs doivent

ainsi être composés des valeurs les plus proches de 0, 1 et −1. Dans un premier temps nous

avons cherché à mesurer l’optimum de chaque LCR indépendamment mais des problèmes

d’accumulation d’erreur nous ont conduit à l’observation suivante : Deux LCRs placés en-

semble à leur optimum respectif ne conduit pas à l’optimum du couple. Nous avons donc

calibré les LCRs par couple. Les calibrations du générateur et de l’analyseur sont réali-

sées séparément. Les deux platines de rotation (polariseur linéaire et lame quart d’onde)

parfaitement référencées et positionnées forment successivement un analyseur idéal et un

générateur idéal.

Pour le générateur et l’analyseur, nous avons cherché les optima de couple de tension

pour les six états élémentaires de polarisation (linéaire vertical, linéaire horizontale, li-

néaire à +45◦, linéaire à −45◦, circulaire droite et circulaire gauche). La Fig.5.15 illustre

la calibration du générateur dans l’état circulaire gauche. L’analyseur idéal sélectionne uni-

quement la polarisation circulaire droite. Une double variation des tensions de commande

des LCR4 et LCR3 est réalisée. L’optimum est obtenu au minimum d’intensité transmise

Fig.5.16. La recherche de l’optimum est réalisée par trois ou quatre balayages successifs

avec une réduction progressive du domaine des tensions. Une précision finale de 0.01V

sur les tensions d’alimentation est recherchée. Les valeurs retenues pour ce dispositif sont

données dans le Tab.5.3
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5.4 Mise en place du dispositif

Fig. 5.15 Expérimentation : Optimum générateur en polarisation circulaire gauche
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Fig. 5.16 Détection : Optimum générateur de l’état VI. Le point rouge correspond au minimum

d’intensité VLCR3 = 5, 30 V et VLCR4 = 2, 34 V

Tensions en V

État Stokes LCR1 LCR2 LCR3 LCR4

I 1 1 0 0 5,76 5,43 4,65 4,65

II 1 -1 0 0 2,07 5,60 2,40 1,80

III 1 0 1 0 2,97 2,50 2,31 1,46

IV 1 0 -1 0 1,70 2,70 2,44 2,40

V 1 0 0 1 1,66 6,00 4,85 1,42

VI 1 0 0 -1 2,83 4,84 5,30 2,34

Tab. 5.3 Tensions optimumales
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Avec les six polarisations élémentaires, nous pouvons définir 12 combinaisons possibles

de base. Les quatre vecteurs de Stokes d’une base sont nécessairement un linéaire (Hori-

zontale ou vertical), un oblique (+45◦ ou −45◦), un circulaire (Positif ou négatif) et un

au choix parmi les restants. Nous avons donc 12 × 12 = 144 possibilités de mesurer la

matrice de Mueller. De manière automatisée, nous mesurons la séquence des 144 matrices

d’intensité de l’air. Nous effectuons ensuite un classement des matrices de la meilleur à la

plus éloignée. La combinaison donnant la matrice intensité la plus proche de la matrice de

l’air est choisie. Pour notre dispositif, nous avons retenu la base générateur de l’Eq.5.17 et

une base analyseur de l’Eq.5.18.

G =















1 1 1 1

1 −1 0 0

0 0 −1 0

0 0 0 −1















(5.17)

A =















1 1 0 0

1 −1 0 0

1 0 −1 0

1 0 0 1















(5.18)

La matrice intensité associée au générateur et à l’analyseur est donnée par l’ Eq.5.19.

L’erreur obtenue sur la matrice intensité est de 3, 2% en moyenne sur les seize éléments,

Eq.5.20.

I = A.Mair.G =















1 0 1/2 1/2

0 1 1/2 1/2

1/2 1/2 0 1/2

1/2 1/2 1/2 1















(5.19)

I =















0, 988 0 0, 42 0, 523

0, 022 0, 969 0, 425 0, 47

0, 49 0, 522 0, 004 0, 559

0, 45 0, 552 0, 496 0, 96















(5.20)

L’incertitude mesurée en un point avec la photodiode n’est pas totalement représenta-

tive de l’erreur sur les images 2D de rétrodiffusion que nous utiliserons. Néanmoins nous

admettrons une incertitude sur la matrice de Mueller inférieure à 5%.
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5.5 Acquisition et traitement d’une image

5.5.1 Réglages de la caméra

La mise au point de la caméra est réalisée à l’interface entre la plaque de verre et

l’échantillon. Nous utilisons une mire pour à la fois réaliser la focalisation et mesurer la

taille de l’image observée. L’image de la Fig.5.17 est une l’acquisition de la mire de 1 cm

de coté et graduée en dixième de millimètre. La résolution de l’image de 1024×1024 pixels

est de 101 pixels/mm soit une image d’environs 1 cm de coté.

Fig. 5.17 Mire de calibration représentée en fausses couleurs

Le dispositif optique est inséré dans le rhéomètre Physica MC300. Le point d’impact

du faisceau laser est excentré de 15 mm, Fig.5.18. Les éléments optiques ne sont pas

parfaitement alignés ce qui conduit à désaxer légèrement (10 ± 2◦) les axes de vorticité et

de vitesse sur les images acquises par la caméra.

Fig. 5.18 Positionnement du point d’impact laser sur la géométrie du rhéomètre
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5.5.2 Acquisition

Pour mesurer une matrice de Mueller, nous devons faire l’acquisition de seize images

d’intensité en modifiant les polarisations d’entrée et de sortie. Pour réduire le bruit des

variations spatiale et temporelle des speckles, chaque image intensité est généralement la

moyenne de 50 images. Les images ont un temps d’intégration d’environ 10 ms. Une autre

méthode pour supprimer ces interférences est de mettre l’échantillon sous écoulement. La

Fig.5.19 représente la matrice intensité (diminué du bruit de la caméra Br = 190 Bits)

de l’Emulsion2 (Concentration 1, 7%, Rayon moyen 220 nm, lTR = 0, 80 mm).

Fig. 5.19 Matrice intensité expérimentale (Unité arbitraire) de l’Emulsion2 (Concentration

1, 7%, Rayon moyen 220 nm, lTR = 0, 80 mm). Images de 10 mm de coté.

Une fois l’ensemble des images acquisses, nous réalisons le calcul des images de la ma-

trice de Mueller Mij par la combinaison linéaire des images de la matrice intensité Iij. Les

combinaisons sont effectuées pixel à pixel suivant la relation de l’Eq.5.21. Cette relation est

calculée à partir de l’Eq.5.8 avec la base générateur Eq.5.17 et la base analyseur Eq.5.18

choisies.

Le bruit de la caméra reste présent uniquement sur l’élément M11. En effet l’ensemble

des autres éléments sont des combinaisons d’un nombre identique d’éléments comptés po-

sitivement et négativement, Eq.5.21.
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M11 = 1
4 (I11 + I12 + I21 + I22)

M12 = 1
4 (I11 − I12 + I21 − I22)

M13 = 1
4 (I11 + I12 − 2I13 + I21 + I22 − 2I23)

M14 = 1
4 (I11 + I12 − 2I14 + I21 + I22 − 2I24)

M21 = 1
4 (I11 + I12 − I21 − I22)

M22 = 1
4 (I11 + I12 − I21 + I22)

M23 = 1
4 (I11 + I12 − 2I13 − I21 − I22 + 2I23)

M24 = 1
4 (I11 + I12 − 2I14 − I21 − I22 − 2I24)

M31 = 1
4 (I11 + I12 + I21 + I22 − 2I31 − 2I32)

M32 = 1
4 (I11 − I12 + I21 − I22 − 2I31 + 2I32)

M33 = 1
4 (I11 + I12 − 2I13 + I21 + I22 − 2I23 − 2I31 − 2I32 + 4I33)

M34 = 1
4 (I11 + I12 − 2I14 + I21 + I22 − 2I24 − 2I31 − 2I32 + 4I34)

M41 = 1
4 (−I11 − I12 − I21 − I22 + 2I41 + 2I42)

M42 = 1
4 (−I11 + I12 − I21 + I22 + 2I41 − 2I42)

M43 = 1
4 (−I11 − I12 + 2I13 − I21 − I22 + 2I23 + 2I41 + 2I42 − 4I43)

M44 = 1
4 (−I11 − I12 + 2I13 − I21 − I22 + 2I24 + 2I41 + 2I42 − 4I44)

(5.21)

5.5.3 Visualisation

Le figure Fig.5.21 est un exemple de matrices de Mueller expérimentales obtenues.

Nous utilisons un lissage sur 10 pixels pour rendre la visualisation des images plus propre.

Nous utilisons également une représentation logarithmique signée donnée par l’Eq.5.22.

La courbe caractéristique de conversion intensité réelle - intensité logarithmique signée est

illustrée dans la Fig.5.20. Il est à noter que nous conservons une représentation relative des

niveaux d’intensité puisque la courbe est monotone croissante. Dans le type de représen-

tation choisie, la couleur verte représente une intensité nulle. De plus cette représentation

met parfaitement en évidence les différents lobes de valeurs positives d’intensité (Couleur

rouge) ainsi que les valeurs négatives (bleu). Dans toute la suite de ce mémoire, nous

conserverons cette convention de représentation.

ILogarithmique Signée = signe (Iréelle) . ln (1 + |Iréelle|) (5.22)

La Fig.5.21 est une représentation de la matrice de Mueller en espace réel (Image de

10 mm de coté) et en échelle logarithmique signée. Cette matrice de Mueller est obtenue

avec l’Emulsion2 à une concentration volumique en huile de 1, 7%. Elle résulte des combi-

naisons des équations Eq.5.21 des éléments de la matrice intensité de la Fig.5.19.
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Fig. 5.20 Courbe caractéristique de conversion de l’intensité pour la représentation logarith-

mique signée

Fig. 5.21 Matrice de Muller expérimentale en échelle logarithmique signée (Unité arbitraire)

d’émulsion d’huile dans de l’eau, images de 10mm de coté. Emulsion2 : concentration

1, 7%, rayon moyen 220 nm et lTR = 0, 80 mm.

5.5.4 Traitement

La première opération consiste à déterminer le barycentre de l’image de l’élément M11.

Les équations des coordonnées du barycentre (xB , yB) Eq.5.23 sont appliquées sur les pixels

dont l’intensité est supérieure à Imax/2. Les indices i et j sont respectivement l’indice de

la ligne et l’indice de la colonne d’un pixel du capteur CCD.
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Fig. 5.22 Positionnement d’un secteur angulaire

xB =
∑

j

(

j
∑

i

Ii,j

)

/
∑

i,j

Ii,j

yB =
∑

i



i
∑

j

Ii,j



 /
∑

i,j

Ii,j

(5.23)

A partir du barycentre, nous réalisons l’intégration angulaire de tous les éléments.

L’intégration angulaire nécessite un passage en cordonnées polaires. Un secteur angulaire

est localisé par son angle θ et son rayon ρ. Sa dimension est donnée par ρdρdθ avec géné-

ralement dθ = 5◦ et dρ = 1pixel. La Fig.5.22 montre son positionnement.

5.5.5 Représentation normalisée

La matrice de Mueller de la Fig.5.21 est en espace réel en (m) avec une intensité en

(m−2). L’adimensionnement d’une matrice de Mueller est alors possible avec une longueur

caractéristique. La normalisation s’effectue alors par rapport au transport diffusif (élément

M11) avec la longueur de transport lTR. Nous rappelons que cette longueur est déterminée

par l’ajustement du modèle de Haskell (Eq.4.7) sur la décroissance radiale d’intensité de

l’élément M11. Nous utiliserons donc la représentation normalisée I (ρ) .l2TR = f
(

ρ
lTR

)

. Il

est à noter que cette représentation normalisée à déjà montrée son intérêt pour la repré-

sentation normalisée du transport scalaire de lumière non-polarisée Fig.4.7

DILLET Jérôme 101
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La Fig.5.23 montre la normalisation sur l’exemple d’une matrice de Mueller de l’Emul-

sion2 à 3, 9%. Nous utiliserons un espace adimensionné de 10 lTR et une intensité norma-

lisée entre −7, .10−2 et 7, 10−2 avec toujours une échelle logarithmique signée.

Fig. 5.23 Normalisation d’une matrice de Mueller. Exemple de l’Emulsion2 à une concentration

volumique 3, 9% avec lTR = 0, 34 mm. a) Représentation réelle, images de 10 mm de

coté. b) Représentation normalisée, images de 10 lTR de coté.
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5.6 Conclusion

Nous avons développé un dispositif expérimental de mesure des matrices de Mueller

rétrodifusées. Nous avons choisi la technologie des lames à cristaux liquides pour piloter

rapidement et facilement les polarisations d’entrée et de sortie. Nous pouvons faire l’ac-

quisition et l’enregistrment d’une matrice de Mueller en environ 2 s. Nous nous sommes

attachés à obtenir les bases générateur et analyseur composées des vecteurs de Stokes les

plus proches des vecteurs de Stokes idéaux. L’étape de calibration est donc primordiale

pour obtenir une précision suffisante (inférieur à 5%) sur les images de la matrice de Muel-

ler d’une résolution spatiale de 0, 01 mm.

La matrice de Mueller d’une suspension est une matrice de 4 × 4 d’images rétrodif-

fusées dont le plan d’observation est l’interface d’un milieu semi-infini. L’élément M11 de

la matrice représente le transport d’énergie correspondant à une onde non-polarisée et

les autres éléments de la matrice caractérisent la propagation des effets de polarisation

de la lumière. Nous utiliserons la matrice de Mueller pour caractériser les suspensions en

mesurant la taille des particules et leur concentration volumique.

Les visualisations des matrices de Mueller ont montré de nombreux lobes de polarisa-

tion. Dans les deux chapitres théoriques suivants, nous chercherons à localiser les informa-

tions disponibles dans la matrice et à donner des liens avec les propriétés physiques de la

suspension.
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Chapitre 6

Modèle à deux événements de

dispersion : Modèle de

Kattawar

Dans le chapitre précédent, nous avons observé expérimentalement le transport in-

cohérent de lumière polarisée. Ce transport de lumière, à la surface de l’échantillon, en

géométrie de rétrodiffusion, est représenté par une matrice de Mueller 2D. Les 16 images

constituant la matrice présentent des variations radiale et angulaire d’intensité. Pour in-

terpréter ces modifications d’intensité et en extraire des informations physiques de la sus-

pension, nous devons réaliser une étude théorique.

L’interaction complète d’une OEM avec une suspension de particules est donnée par

les équations du transfert radiatif sous forme vectorielle en y incluant le transport de la

polarisation. Aucune approche analytique, y compris dans le cas du transfert radiatif sta-

tionnaire, n’est disponible aujourd’hui en dehors du cas de particules très petites devant

la longueur d’onde (approximation de Rayleigh, (Chandrasekhar, 1960)). Nous adoptons

alors dans ce chapitre une approche analytique simplifiée avec le modèle de Kattawar à

deux événements de dispersions (Rakovic et Kattawar, 1998).

Ce chapitre débutera par la description et la mise en équation d’un événement de

dispersion. Ensuite nous donnerons une description complète du modèle de Kattawar à

deux événements de dispersion. Ce modèle fera l’objet d’une analyse succincte. Ce chapitre

se terminera par une première comparaison entre les matrices de Mueller rétrodiffusées

expérimentales et les matrices de Mueller issues de ce modèle analytique simplifié.
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Chapitre 6. Modèle à deux événements de dispersion : Modèle de Kattawar

6.1 Événement de dispersion sur une particule sphérique

La relation de dispersion (Eq.6.1) sur une sphère sphérique homogène est définie

dans le repère orienté dans la direction de sortie (θ, φ) (Os, xs, ys, zs). Or le vecteur de

stokes de l’onde incidente est défini dans le plan perpendiculaire à la direction incidente

(Oi, xi, yi, zi). Un événement de dispersion nécessite donc deux transformations Fig.6.1.

La première opération consiste à calculer le vecteur de Stokes de l’onde incidente dans le

plan de sortie puis la seconde étape concerne la dispersion par la particule.

(

E‖s

E⊥s

)

=
exp (−ik (~r − ~z))

−ikr

(

J2 (x,m, θ) 0

0 J1 (x,m, θ)

)(

E‖i

E⊥i

)

(6.1)

Fig. 6.1 Rotations sucesives φ puis θ

Les détails des deux modifications sont donnés ci-dessous :

– Nous exprimons le vecteur de Stokes incident Si dans le plan de sortie. Ceci est réa-

lisé par la matrice de rotation R (φ), Eq.6.2. La géométrie sphérique de la particule

rend la transformation indépendante de θ.

RDispersion(φ) =















1 0 0 0

0 cos(2φ) sin(2φ) 0

0 − sin(2φ) cos(2φ) 0

0 0 0 1















(6.2)
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– La seconde transformation correspond à une projection du vecteur de Stokes dans

la direction θ. Elle est illustrée par la matrice de Mueller de la sphère Mx,m (θ) don-

née dans l’Eq.6.3 où ax,m (θ), bx,m (θ), dx,m (θ) et ex,m (θ) sont les fonctions de Mie

données par l’Eq.6.4.

Mx,m (θ) =















ax,m (θ) bx,m (θ) 0 0

bx,m (θ) ax,m (θ) 0 0

0 0 dx,m (θ) −ex,m (θ)

0 0 ex,m (θ) dx,m (θ)















(6.3)

où

ax,m (θ) = 1
2π

(

|J1 (x,m, θ)|2 + |J2 (x,m, θ)|2
)

Fnorm (x,m)

bx,m (θ) = 1
2π

(

|J1 (x,m, θ)|2 − |J2 (x,m, θ)|2
)

Fnorm (x,m)

dx,m (θ) = 1
2π

(

J1 (x,m, θ) J2 (x,m, θ) + J1 (x,m, θ) J2 (x,m, θ)
)

Fnorm (x,m)

ex,m (θ) = 1
2π

(

J1 (x,m, θ) J2 (x,m, θ) − J1 (x,m, θ) J2 (x,m, θ)
)

Fnorm (x,m)

(6.4)

Pour des particules très petites devant la longueur d’onde nous sommes en approxima-

tion de Rayleigh. Les fonctions ax,m, bx,m, ex,m et dx,m (Eq.6.4) se réduisent aux relations

de l’Eq.6.5



























aRayleigh (θ) = 3
16π

(

1 + cos2 θ
)

bRayleigh (θ) = 3
16π

(

−1 + cos2 θ
)

dRayleigh (θ) = 3
8π cos θ

eRayleigh (θ) = 0

(6.5)

L’état de polarisation de sortie Ss est alors donné par la relation matricielle Eq.6.6

(Fig.6.1) :

Ss = M (θ)R (φ)Si














S0
s

S1
s

S2
s

S3
s















=















ax,m (θ) bx,m (θ) 0 0

bx,m (θ) ax,m (θ) 0 0

0 0 dx,m (θ) −ex,m (θ)

0 0 ex,m (θ) dx,m (θ)















.















1 0 0 0

0 cos(2φ) sin(2φ) 0

0 − sin(2φ) cos(2φ) 0

0 0 0 1















.















S0
i

S1
i

S2
i

S3
i















(6.6)

Le développement de l’Eq.6.6 conduit à l’expression de l’Eq.6.7 de la polarisation ré-

sultante Ss.
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













S0
s

S1
s

S2
s

S3
s















=















ax,m (θ)S0
i + bx,m (θ)

[

S1
i cos (2φ) + S2

i sin (2φ)
]

bx,m (θ)S0
i + ax,m (θ)

[

S1
i cos (2φ) + S2

i sin (2φ)
]

−ex,m (θ)S3
i + dx,m (θ)

[

S2
i cos (2φ) − S1

i sin (2φ)
]

dx,m (θ)S3
i + ex,m (θ)

[

S2
i cos (2φ) − S1

i sin (2φ)
]















(6.7)

L’intensité dispersée dans tout l’espace autour de la particule est donnée par la première

composante du vecteur de Stokes S0
s de l’Eq.6.7.

Fig. 6.2 Représentation d’un événement de dispersion dans le repère orthonormé (Oi, xi, yi, zi)

La probabilité de dispersion est définie dans tout l’espace autour d’une particule. Pour

chaque événement de dispersion, nous considérons un repère orthonormé (Oi, xi, yi, zi)

comme positionné dans la Fig.6.2. La direction (Oi, zi) indique la direction de l’onde in-

cidente. La polarisation de l’onde est définie dans le plan (Oi, xi, yi). Par exemple, une

polarisation linéaire suivant l’axe (Oi, xi) est donnée par le vecteur de Stokes (1, 1, 0, 0)T

et une polarisation linéaire suivant l’axe (Oi, yi) par (1,−1, 0, 0)T .

La Fig.6.3 apporte une représentation en trois dimensions de l’intensité (S 0
s ). Cette

distribution d’intensité dépend :

– De la position de dispersion dans l’espace définie à la fois par l’angle radial θ et

l’angle azimutal φ.

– De l’état de polarisation de l’onde incidente Si.

– Des propriétés du milieu et de la particule données par les paramètres adimensionnés

x et m.
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6.1 Événement de dispersion sur une particule sphérique

Fig. 6.3 Distribution d’intensité en 3D pour quatre polarisations incidentes différentes (po-

larisation linéaire suivant x (1, 1, 0, 0)
T
, polarisation linéaire suivant y (1,−, 1, 0, 0)

T
,

polarisation linéaire oblique (1, 0, 1, 0)
T

et polarisation circulaire (1, 0, 0, 1)
T
) pour (a)

une particule en approximation de Rayleigh et (b) une particule de taille x = 1 et de

paramètre optique m = 1, 1.
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Deux observations sont à noter. Premièrement, la propriété d’une propagation privi-

légiée vers l’avant pour les grosses particules que nous avons observée sur la fonction de

phase sur une particule p (θ) (Eq.3.8) est conservée. En effet nous avons une intensité

supérieure dans l’axe (Oi, zi) pour la particule x = 1 (Fig.6.3.b) par rapport à la particule

en approximation de Rayleigh (Fig.6.3.a). Deuxièmement, l’intensité dispersée est maxi-

male dans l’axe perpendiculaire à l’axe de polarisation de l’onde incidente. Si nous prenons

l’exemple de la répartition 3D de l’intensité de la Fig.6.3.a en haut à gauche, l’intensité

est supérieure suivant l’axe (Oi, yi) alors que l’onde incidente est polarisée linéairement

suivant l’axe (Oi, xi).

6.2 Construction du Modèle de Kattawar

Après avoir observé un événement de dispersion, nous étudions le modèle de Kattawar

(Rakovic et Kattawar, 1998). Ce modèle est basé sur deux événements de dispersions

successifs.

6.2.1 Description du Modèle

Une OEM est envoyée verticalement dans le milieu diffusant. Elle rencontre alors une

première particule à une certaine distance et subit une première dispersion autour de celle-

ci. L’OEM est alors dispersée dans tout l’espace. L’onde rencontre ensuite une seconde

particule, Fig.6.4. Nous choisissons alors de forcer le second événement de dispersion afin

de faire sortir le photon verticalement.

La position de sortie dépend de l’angle azimutal φ du premier événement de dispersion

et de la distance de propagation entre les deux événements de dispersion. Par ailleurs les

deux angles de dispersion θ et π − θ sont liés aux distances z1 et z2 que sont les altitudes

où sont effectuées les deux dispersions. Ces corrélations impliquent que pour une position

de sortie fixée, les intégrations sur z1 et z2 conduisent à un calcul analytique complet de

la répartition spatiale de l’OEM en géométrie de rétrodiffusion. La distance de propaga-

tion entre deux événements de dispersion obéit à la loi de Beer-Lambert. La distance d

parcourue entre deux événements de dispersion est donc donnée par la relation exp(−βd)

où β (m−1) est l’inverse de la longueur de dispersion ls.

Le détail des mouvements est illustré par la Fig.6.4. Six étapes sont alors nécessaires

pour décrire le parcourt complet d’un photon :

1. Le photon entre dans le milieu au point O0 et se propage sur une longueur z1 à partir

O0 : (O0, x, y, z) ⇒ (O1, x, y, z). z1 appartient au domaine [0;∞ [ .
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2. Le photon subit le 1er évènement de dispersion.

– La polarisation du photon incident est projetée par la rotation φ par rapport à

l’axe (O1, z) : (O1, x, y, z) ⇒ (O1, x1, y1, z1). L’angle φ est fixé par la position de

sortie, il appartient au domaine [0 ; 2π [ .

– Puis la polarisation est modifiée par la matrice de Mueller de l’objet diffusant

M(θ) : (O1, x1, y1, z1) ⇒ (O1, x
′
1, y

′
1, z

′
1). L’angle θ appartient au domaine [0 ; π [ .

3. Suite à la première dispersion le photon se propage dans sa nouvelle direction définie

par le couple (φ, θ) sur une longueur r : (O1, x
′
1, y

′
1, z

′
1) ⇒ (O2, x

′
1, y

′
1, z

′
1).

4. Le photon subit ensuite le 2eme évènement de dispersion : Seule la polarisation est

modifiée par la rotation M(π− θ) par rapport à l’axe (O2, x
′
1) de manière à imposer

une sortie verticale au photon (O2, x
′
1, y

′
1, z

′
1) ⇒ (O2, x2, y2, z2).

5. Le photon quitte le milieu par une propagation sur une distance z2 : (O2, x2, y2, z2) ⇒

(O3, x2, y2, z2). z2 appartient au domaine [0 ; ∞ [ .

6. Les mouvements sont conclus par une projection de la polarisation dans le re-

père initial. On réalise alors une rotation d’angle −φ par rapport à l’axe (O3, z3) :

(O3, x2, y2, z2) ⇒ (O3, x3, y3, z3).

Fig. 6.4 Calcul de Kattawar
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Les contraintes des deux événements de dispersion induisent les relations de l’Eq.6.8

suivantes :

r =
(

ρ2 + (z1 − z2)
2
) 1

2

tan (θ) = ρ
z1−z2

(6.8)

La matrice de Mueller rétrodiffusée (Mrétrodiffusée) est donnée par le cheminement des

photons lors des deux événements de dispersion. Elle s’écrit sous la forme différentielle

Eq.6.9 ou Eq.6.10. Cette matrice de passage (4 × 4, 2D) permet de calculer en tout point

du plan rétrodiffusé O3 le vecteur de Stokes de sortie Ss pour tout vecteur de Stokes inci-

dent Si en O0 avec Ss = MrétrodiffuséeSi.

dM = R(−φ). exp(−βz2).M(π − θ). exp(−βr)

.M(θ).R(φ). exp(−βz1).
dz1dz2
r2

(6.9)

dMrétrodiffusée = R(−φ).M(π − θ).M(θ).R(φ). exp (−β (Z1 + z2 + r)) .
dz1dz2
r2

(6.10)

6.2.2 Expression analytique du Modèle

Le calcul du modèle analytique consiste à intégrer l’expression Eq.6.10 dans tout l’es-

pace soit l’expression pour z1 et z2 appartenant à l’intervalle [0 ; +∞ [ (Eq.6.11) :

Mrétrodiffusée = R(−φ)

{
∫ ∞

0
dz1

∫ ∞

0

dz2
r2

exp(−β(Z1 + z2 + r))

M(π − θ)M(θ)

}

R(φ)

(6.11)

L’annexe à la fin de ce chapitre détaille les opérations de calcul mathématique condui-

sant à l’expression finale Eq.6.12 où Mkatawar est donné par l’Eq.6.13.

Mrétrodiffusée =
R(−φ)

2ρβ

∫ π
2

0

{

exp

[

−βρ cotan

(

θ

2

)]

Mkatawar(θ)dθ

}

R(φ) (6.12)

Mkatawar(θ) =















A(θ) B(θ) 0 0

B(θ) A(θ) 0 0

0 0 D(θ) −E(θ)

0 0 E(θ) D(θ)















avec :


























A(θ) = 2[a(θ)a(π − θ) + b(θ)b(π − θ)]

B(θ) = 2[a(θ)b(π − θ) + a(π − θ)b(θ)]

D(θ) = 2[d(θ)d(π − θ) − e(θ)e(π − θ)]

E(θ) = 2[e(θ)d(π − θ) + e(π − θ)d(θ)]

(6.13)
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6.3 Observations du modèle

La conclusion importante de ce modèle porte sur la relation analytique obtenue. Il est

possible de calculer par une simple somme (quelques secondes) l’ensemble des éléments

de la matrice de Mueller rétrodiffusée, Mrétrodiffusée, l’expression Eq.6.12 est une relation

matricielle 4 × 4.

6.2.3 Normalisation des matrices avec ls

Par rapport au calcul présenté dans l’article (Rakovic et Kattawar, 1998), nous ap-

portons une approche normalisée de l’espace par ls avec β = 1/ls. ls est la longueur

de dispersion correspondant à la distance moyenne parcourue par un photon entre deux

événements de dispersion successifs. En régime de diffusion non-dépendante elle est in-

versement proportionnelle à la fraction volumique φv. Le calcul est donc effectué dans un

espace normalisé en fonction des deux paramètres x et m. Nous nous affranchissons ainsi

du troisième paramètre, la fraction volumique.

6.3 Observations du modèle

La Fig.6.5.a donne un exemple de calcul de la matrice de Mueller rétrodiffusée pour

x = 3 et m = 1, 1. La taille de chaque image est de 2ls de coté. Cette matrice est associée

à une matrice expérimentale normalisée Fig.6.5.b de l’Emulsion2 220 nm à une concentra-

tion volumique 3.9%

Le modèle de Kattawar permet de retrouver l’importante diversité des lobes au sein

des différents éléments. Nous avons une parfaite cohérence des lobes positifs et des lobes

négatifs entre l’expérience et le modèle. Le modèle de Kattawar à deux événements de

diffusion apporte donc une bonne représentation qualitative des effets de polarisation ob-

tenus dans la matrice de Mueller.

À partir du modèle de Kattawar, nous pouvons réaliser une première analyse de la ma-

trice de Mueller rétrodiffusée. Le premier élément de la matrice, l’élément M11 est isotrope

angulairement. Cet élément illustre le transport incohérent de lumière non polarisée. Par

ailleurs, nous pouvons regrouper les éléments semblables M21, M12, M31 et M13 composés

de deux lobes négatifs et de deux lobes positifs. Ces éléments sont tous symétriques par

rotation et correspondent à une polarisation incidente ou résultante linéaire. Un deuxième

regroupement est obtenu à partir des éléments M22 et M33. Ces éléments sont constitués

de quatre lobes positifs et quatre lobes négatifs. Ils traduisent l’interaction entre des po-
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larisations linéaires initiales et de sortie perpendiculaires. Un troisième groupement des

éléments M23 et M32, constitués de quatre lobes positifs et quatre négatifs, correspond à

une inclinaison à 45◦ entre les polarisations linéaires incidentes et de sortie. Le quatrième

groupe constitué des éléments M24, M34, M43 et M42 correspondent à l’interaction avec

une polarisation circulaire. Seuls ces éléments ne sont pas en symétrie diagonale dans la

matrice de Muller. Leur intensité est faible comparée aux autres éléments et elle devient

nulle pour des particules de Rayleigh. Nous remarquons enfin que les éléments M14 et

M41 sont nuls pour des particules sphériques. Le livre (Chandrasekhar, 1960) confirme la

symétrie diagonale de la matrice pour des particules de Rayleigh.

Fig. 6.5 a) Matrice expérimentale de l’Emulsion2 220 nm à une concentration volumique 3, 9%

avec lTR = 0, 34 mm et b) Modèle de Kattawar associée (x = 3 ; m = 1, 1)
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6.4 Conclusion

La matrice rétrodiffusée expérimentale (Fig.6.5.b) représente la diffusion multiple sur

un ensemble de particules. Elle est caractérisée par la longueur de libre transport moyen

lTR. La matrice issue du modèle de Kattawar (Fig.6.5.a) est basée sur deux événements

de dispersion. Elle est caractérisée par la longueur de dispersion ls. L’observation des deux

matrices normalisées par leur longueur caractéristique, montre bien des intensités des effets

de polarisation semblables. Par contre les distances de propagation des effets sont très dif-

férentes. Sur les données expérimentales, les effets de polarisation sont visibles jusqu’à une

distance d’environs 3 lTR du centre de la tache alors qu’ils disparaissent après une distance

d’environs ls sur les données du modèle. Le modèle n’apporte pas une bonne comparaison

entre ces deux échelles différentes que sont la diffusion et l’événement de dispersion.

6.4 Conclusion

L’étude du modèle de Kattawar à deux événements de dispersion donne une bonne

observation qualitative des matrices de Mueller rétrodiffusées. Ce modèle simplifié est suf-

fisant pour l’étude de la morphologie des lobes de polarisation. Il permet de réaliser un

rapprochement des éléments en groupes symétriques par rotation : Groupe1 M21, M12,

M31 et M13, Groupe2 M22 et M33, Groupe3 M23 et M32, Groupe4 M24, M34, M43 et M42

et les éléments M41 et M14 qui sont toujours nuls.

L’application du modèle de Kattawar est réduite ; en effet, il n’apporte pas une bonne

représentation quantitative du transport de polarisation. Le changement d’échelle entre le

transport incohérent de lumière polarisée (expérimentation) caractérisé par le libre par-

court moyen lTR et la propagation à deux dispersions (modèle de Kattawar) caractérisée

par la longueur ls n’est pas valide.

Nous apporterons donc dans le prochain chapitre une autre solution théorique au trans-

port de lumière avec des simulations numériques de Monté Carlo. Nous utiliserons la des-

cription donnée ici pour un événement de dispersion dans l’espace, étendue à la dispersion

multiple.
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Annexe : Calcul du modèle de Kattawar

L’obtention de l’expression finale Eq.6.12 nécessite un ensemble d’opérations de sim-

plification de l’expression Eq.6.14 qui ne fait pas l’objet d’une description explicite dans

l’article (Rakovic et Kattawar, 1998).

Mrétrodiffusée = R(−φ)

{∫ ∞

0
dz1

∫ ∞

0

dz2
r2

exp(−β(Z1 + z2 + r))

M(π − θ)M(θ)

}

R(φ)

(6.14)

Nous pouvons supprimer la variable z2, en effectuant le changement z2 = z1 + ρ
tan(θ)

(Eq.6.8). Les bornes sont modifiées : z2 = ∞ devient θ = 0 et z2 = 0 devient θ =

π − arctan
(

ρ
z1

)

. Puis en utilisant la propriété tan(π − θ) = − tan(θ) = ρ
z1

, l’Eq.6.11 de-

vient l’Eq.6.15.

Mrétrodiffusée = R(−φ)

∫ ∞

0
dz1

∫ 0

π−arctan( ρ
z1

)

{

exp (−β (2z1+

ρ

(

1

tan(θ)
+

1

sin(θ)

)

(π − θ)M(θ)R(φ)dθ

}

(6.15)

Si nous posons t = tan
(ρ

2

)

, nous avons 1
tan(θ) + 1

sin(θ) = 1−t2

2t + 1+t2

2t = 1
t = cotan

(

θ
2

)

d’où l’expression l’Eq.6.16 suivante :

Mrétrodiffusée = R(−φ)
−1

ρ

∫ ∞

0
dz1

∫ 0

π−arctan( ρ
z1

)

{

dθ exp

[

− β

(

2z1

+ ρ cotan

(

θ

2

))]

M(π − θ)M(θ)R(φ)

}

(6.16)

Il est alors possible de séparer l’intégrale en deux parties :

Mrétrodiffusée = −
R(−φ)

ρ

∫ ∞

0
dz1

∫ 0

π
2

dθ exp

[

− β

(

2z1

+ ρ cotan

(

θ

2

))]

M(π − θ)M(θ)R(φ)

−
R(−φ)

ρ

∫ ∞

0
dz1

∫ π
2

π−arctan( ρ
z1

)
dθ exp

[

− β

(

2z1

+ ρ cotan

(

θ

2

))]

M(π − θ)M(θ)R(φ)

(6.17)

Nous inversons les bornes de la 1er intégrale et nous changeons la condition aux bornes

de la seconde suivant la réciprocité donnée dans la relation Eq.6.18.







0 ≤ z1 ≤ ∞

π − arctan
(

ρ
z1

)

≥ θ ≥ π
2

⇐⇒

{

π ≥ θ ≥ π
2

−ρ cot (θ) ≤ z1 ≤ ∞
(6.18)
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6.4 Conclusion

Nous obtenons l’expression Eq.6.19 suivante :

Mrétrodiffusée =
R(−φ)

ρ

∫ π
2

0
dθ

∫ ∞

0
dz1 exp

[

− β

(

2z1

+ ρ cotan

(

θ

2

))]

M(π − θ)M(θ)R(φ)

−
R(−φ)

ρ

∫ π
2

π
dθ

∫ ∞

−ρ cotan(θ)
dz1 exp

(

− β

[

2z1

+ +ρ cotan

(

θ

2

)])

M(π − θ)M(θ)R(φ)

(6.19)

L’intégration sur z1 (Eq.6.20), donne l’expression l’Eq.6.21.

Mrétrodiffusée =
R(−φ)

ρ

∫ π
2

0

{[

−
1

2β
exp

(

−β

(

2z1 + ρ cotan

(

θ

2

)))]∞

0

M(π − θ)M(θ)R(φ)dθ

}

−
R(−φ)

ρ

∫ π

π
2

{[

−
1

2β
exp

(

−β

(

2z1 + ρ cotan

(

θ

2

)))]∞

−ρ cotan(θ)

M(π − θ)M(θ)R(φ)dθ

}

(6.20)

Mrétrodiffusée =
R(−φ)

2ρβ

∫ π
2

0

{

exp

[

−βρ cotan

(

θ

2

)]

M(π − θ)M(θ)dθ

}

R(φ)

−
R(−φ)

2ρβ

∫ π

π
2

{

exp

[

−β

(

−2ρ cotan(θ) + ρ cotan

(

θ

2

))]

M(π − θ)M(θ)dθ

}

R(φ)

(6.21)

Or nous avons dans la 2eme intégrale −2 cotan(θ) + cotan
(

θ
2

)

= tan
(

θ
2

)

et si nous

posons θ′ = π − θ, l’Eq.6.21 devient l’Eq.6.22.

Mrétrodiffusée =
R(−φ)

2ρβ

∫ π
2

0

{

exp

[

−βρ cotan

(

θ

2

)]

M(π − θ)M(θ)dθ

}

R(φ)

−
R(−φ)

2ρβ

∫ π
2

0

{

exp

[

−βρ tan

(

θ′ − π

2

)]

M(θ′)M(π − θ′)dθ′
}

R(φ)

(6.22)

Nous avons tan
(

θ′−π
2

)

= cotan
(

θ′

2

)

et dθ′ = −dθ. Puis la propriété sur les intégrales
∫

f(x)h(x)dx +
∫

g(x)h(x)dx =
∫

h(x)(f(x) + g(x))dx permet la transformation finale

suivante :
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Mrétrodiffusée =
R(−φ)

2ρβ

∫ π
2

0

{

exp

[

−βρ cotan

(

θ

2

)]

(

M(π − θ)M(θ) +M(θ)M(π − θ)

)

dθ

}

R(φ)

(6.23)

Il est possible de simplifier l’expression en posant Mkatawar(θ) = M(π − θ)M(θ) +

M(θ)M(π − θ) (Eq.6.26) où M(θ) et M(π − θ) sont les matrices de Mueller d’une parti-

cule sphérique, données respectivement dans l’Eq.6.24 et l’Eq.6.25.

M(θ) =















a(θ) b(θ) 0 0

b(θ) a(θ) 0 0

0 0 d(θ) −e(θ)

0 0 e(θ) d(θ)















(6.24)

M(π − θ) =















a(π − θ) b(π − θ) 0 0

b(π − θ) a(π − θ) 0 0

0 0 d(π − θ) −e(π − θ)

0 0 e(π − θ) d(π − θ)















(6.25)

Mkatawar(θ) =















A(θ) B(θ) 0 0

B(θ) A(θ) 0 0

0 0 D(θ) −E(θ)

0 0 E(θ) D(θ)















Où :


























A(θ) = 2[a(θ)a(π − θ) + b(θ)b(π − θ)]

B(θ) = 2[a(θ)b(π − θ) + a(π − θ)b(θ)]

D(θ) = 2[d(θ)d(π − θ) − e(θ)e(π − θ)]

E(θ) = 2[e(θ)d(π − θ) + e(π − θ)d(θ)]

(6.26)

L’expression simplifiée se résume à l’Eq.6.27.

Mrétrodiffusée =
R(−φ)

2ρβ

∫ π
2

0

{

exp

[

−βρ cotan

(

θ

2

)]

Mkatawar(θ)dθ

}

R(φ) (6.27)
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Simulation de Monte Carlo

La diffusion d’une OEM par une suspension se traduit par de nombreux événements de

dispersion. Dans le précédent chapitre, nous vu que le modèle de Kattawar basé sur deux

événements de dispersion n’apportait qu’une représentation qualitative et non-quantitative

du transport de lumière polarisée. Dans ce chapitre, nous simulerons le transport incohé-

rent de lumière polarisée par des simulations complètes de Monte Carlo. Ces simulations

seront basées sur la théorie de Mie applicable à des particules sphériques homogènes (Cha-

pitre.4).

Nous avons observé que le transport d’énergie (élément M11 de la matrice de Mueller)

est essentiellement caractérisé par la longueur de diffusion lTR. Cette longueur correspon-

dant à une marche aléatoire des photons dans le milieu dépend de trois paramètres : la

taille x, les propriétés optiques m et la fraction volumique ϕv . En observant le transport

de lumière polarisée (autres éléments de la matrice de Mueller), nous souhaitons obtenir

des informations supplémentaires sur ces paramètres. Cette étude théorique se positionne

dans un régime de dispersion non-dépendante (Distance interparticulaire grande devant la

longueur d’onde). L’exploitation des simulations de Monte Carlo présentée dans ce cha-

pitre a été l’objet d’une publication (Dillet et al., 2006).

Ce chapitre sur la modélisation du transport de polarisation débutera par une des-

cription complète des simulations de Monte Carlo. Nous construirons ensuite une base

de données de résultats sur laquelle nous rechercherons les éléments où se manifestent

les informations. Nous terminerons ce chapitre par l’observation du lien entre la diffusion

multiple constituée d’un grand nombre d’événements de dispersion et l’événement local de

dispersion (x et m).
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Chapitre 7. Simulation de Monte Carlo

7.1 Descriptions

L’objectif des simulations de Monte Carlo (Metropolis et Ulam, 1949) est de substituer

un phénomène physique par la superposition d’un grand nombre d’événements élémen-

taires. Ici un faisceau lumineux est représenté par un nombre important de photons. Nous

obtenons un bon compromis entre le temps de calcul et le rapport signal sur bruit pour 100

millions de photons. Ces simulations sont basées sur la théorie de Mie. Elles considèrent

un milieu constitué de particules sphériques monodiperses non-absorbantes distribuées

aléatoirement dans l’espace. Le calcul consiste donc à envoyer verticalement (direction

z) dans un milieu dispersant un photon, à suivre son cheminement lors des événements

successifs de dispersion et à récupérer sa position et son état de polarisation à la sortie

du milieu, Eq.7.1. La Fig.7.1 illustre la propagation d’un photon. Nous décomposerons le

parcours d’un photon par une propagation initiale sur une distance d0 puis n événement

de dispersion.

SRétrodiffusé = [n événements de dispersion]SIncident (7.1)

Fig. 7.1 Propagation d’un photon

La position d’un photon est exprimée dans le repère du laboratoire. Son état de pola-

risation est calculé dans un repère local par son vecteur Stockes.

7.1.1 Normalisation des simulations

Les simulations ont été en très grande partie inspirées de l’article de (Bartel et Hiel-

scher, 2000), en y intégrant une normalisation sur la fraction volumique ϕv . Dans le do-
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maine de diffusion non-dépendante la dispersion des effets de polarisation autour d’une

particule ne fait intervenir que les paramètres x et m (Eq.6.1). La fraction volumique en

particule ϕv ne modifie exclusivement que la distance de dispersion ls entre deux événe-

ments de dispersion. Cette distance est inversement proportionnelle avec ϕv, Eq.4.1. Nous

pouvons donc réaliser des simulations en transport normalisé et ainsi rendre la simulation

indépendante de la fraction volumique avec lTR = 1 soit ls = 1 − g (x,m).

Nous construisons donc une base de données sur les deux paramètres x et m de l’évé-

nement local de dispersion. Le premier paramètre est le paramètre optique m. Les simu-

lations ont été réalisées avec les valeurs 0, 75, 0, 90, 1, 05, 1, 10, 1, 20, 1, 30, 1, 50 et 1, 80.

Ce domaine couvre l’ensemble des applications des bulles d’air dans l’eau (les mousses :

m ≈ 0.75) aux particules minérales dans l’air (les poudres : m ≈ 1.80). Le second para-

mètre est le paramètre de taille x avec les valeurs 0, 10, 0, 50, 0, 75, 1, 00, 1, 25, 1, 50, 1, 75,

2, 00, 2, 50, 3, 00, 4, 00, 6, 00, 10, 00 et 20, 00. Le domaine couvert s’étend typiquement de

quelques nanomètres à quelques micromètres pour des longueurs d’onde situées dans le

domaine visible.

7.1.2 Préambule au tirage aléatoire sur une fonction de probabilité

L’objectif de ce préambule concerne le tirage aléatoire sur une fonction de probabilité.

Nous considérons une fonction de probabilité p (θ) ≥ 0 à une dimension (exemple Fig.7.2.a)

avec θ ∈ ] 0 ; θmax ] et de valeur maximum pmax. Le tirage aléatoire sur cette fonction de

theta peut est effectué de deux manières :

– Nous pouvons créer une fonction cumulée de probabilité f (θ) =
∫ θ
0 p (θ) dθ (Fig.7.2.b).

Cette fonction est une distribution uniforme monotone croissante. Nous pouvons

alors réaliser un tirage uniforme sur f (θ) en cherchant θ tel que f (θ) = ξ fmax où

ξ est tiré aléatoirement et uniformément sur ∈ [0 ; 1[ et fmax =
∫ θmax

0 p (θ) dθ.

– La seconde possibilité est de réaliser un double tirage aléatoire. Nous considérons ξ ′

et ξ′′ tirés aléatoirement et uniformément sur ∈ [0 ; 1[. Nous posons θ = ξ ′θmax, si

la relation p (θ) ≥ ξ′′pmax est vérifiée alors le tirage de θ est accepté. Dans le cas

contraire, nous répétons le tirage de ξ ′ et ξ′′ jusqu’à vérifier la relation.

Sur l’exemple de la Fig.7.2 nous vérifions que les deux techniques sont correctes. Le test

est réalisé sur une fonction de phase p(θ) pour x = 3 et m = 1, 1 avec 100 000 tirages.

Pour une fonction à n > 1 dimensions (n variables), seul la seconde méthode avec un

tirage de n+ 1 nombres aléatoires peut être utilisée.
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Fig. 7.2 Tirage aléatoire sur une fonction de probabilité à une dimension. a. Fonction de

probabilité (fonction de phase x = 3 et m = 1, 1), b. Fonction cumulée de probabilité

et c. Vérification de la conformité des tirages, Ligne : fonction de probabilité, ◦ :

Technique utilisant la fonction cumulée de probabilité et + Technique utilisant le

double tirages aléatoires

7.1.3 Tirages aléatoires pour un événement de dispersion

Un événement de dispersion est défini par trois entités di, θi et φi. Il se décompose par

un choix d’une direction de propagation (θi, φi) puis par une propagation sur une distance

di. La première distance de propagation verticale d0 du photon dans le milieu est calculée

identiquement à di.

La distance parcoure entre deux événements de dispersion di répond à la loi exponen-

tielle de Beer-Lambert. La relation Eq.7.2 traduit cette propriété importante où la variable

ξ0i ∈ [0 ; 1[ est obtenue par tirage aléatoire uniforme.

di = −ls ln
(

1 − ξ0
i

)

(7.2)

Le choix de θi et φi d’un événement de dispersion n’est pas anodin. Il est nécessaire

de se rapporter à l’expression du vecteur de Stokes d’un événement de dispersion Eq.6.7.

Le tirage des angles (θ et φ) est réalisé avec la composante S0 représentant l’intensité

dispersée autour de la particule. Nous utiliserons la probabilité de dispersion normalisée

entre 0 et 1, donnée par la relation Eq.7.3.

ρnorm
scat x,m (θi, φi, Si−1) =

ax,m (θi) + bx,m (θi)
[

S1
i−1

S0
i−1

cos (2φi) +
S2

i−1

S0
i−1

sin (2φi)
]

ax,m (0) + |bx,m (0)|
(7.3)

Pour effectuer le tirage de φi et θi nous utilisons la seconde technique de tirage aléa-

toire sur une fonction de probabilité en tirant trois nombres aléatoires. Nous tirons sur
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une sphère homogène des points définis par les angles φi et θi :

– Tirage aléatoire uniforme de φi ∈ [0 ; 2π[ avec ξ1
i ∈ [0 ; 1[, Eq.7.4 :

φi = 2πξ1
i (7.4)

– Tirage aléatoire non-uniforme de θi ∈ [0 ; π[ avec ξ2
i ∈ [0 ; 1[, Eq.7.5 :

θi =
π

2
+ arcsin

(

2ξ2i − 1
)

(7.5)

Ensuite nous vérifions la probabilité de diffusion par le tirage d’un troisième nombre

aléatoire ξ3
i ∈ [0 ; 1[. Si la condition de probabilité donnée par l’Eq.7.6 n’est pas vérifiée,

nous renouvelons les trois tirages aléatoires.

ρnorm
scat x,m (θi, φi, Si−1) ≥ ξ3

i (7.6)

Les tirages de l’angle de dispersion θi et de l’angle azimutal φi sont couplés (Bartel et

Hielscher, 2000). Dans l’article (Wang et al., 2003), il est suggéré un tirage aléatoire initial

de φi sur l’intervalle [0 ; 2π[ puis du tirage de θi sur la fonction cumulée de probabilité

associée à l’Eq.7.3 (avec φi connu). Cette erreur importante se traduit notamment par une

perte de symétrie de la matrice de Mueller rétrodiffusée.

7.1.4 Repère local et repère global

Nous utilisons deux repères pour suivre les événements de dispersion d’un photon : Un

repère fixe (repère global ou repère du laboratoire) RG : (O, ~X, ~Y , ~Z) et un repère local

mobile suivant le photon RL i : (oi, ~ui, ~vi, ~wi).

Pour chaque événement de dispersion i, le vecteur de Stokes de sortie Si est donné par

la relation de l’Eq.7.7 où les angles θi et φi sont tirés suivant la probabilité de l’Eq.7.3

et Si−1 est le vecteur de Stokes incident. Cette relation est donnée dans le repère local

RL i : (oi, ~ui, ~vi, ~wi) où ~wi est orienté dans la direction de sortie du photon.

Si = M (θi)R (φi)Si−1 (7.7)

Comme nous l’avons observé dans le modèle de Kattawar Eq.6.23, la sortie du pho-

ton doit obligatoire s’accompagner d’une rotation finale R(−φ) de manière à projeter la

polarisation de sortie dans le repère fixe du laboratoire. Pour réaliser cette projection

nous devons suivre tout au long de la propagation du photon dans le milieu les coordon-

nées le repère local dans un repère global fixe. À l’entrée du photon dans le milieu les

repères globale RG et local RL0 sont confondus. Les composantes des vecteurs du repère

RL 0 : (o0, ~u0, ~v0, ~w0) sont données par l’Eq.7.8 dans le repère globale RG. Puis lors d’un
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événement de dispersion i les composantes du repère local RL i sont calculées par la mul-

tiplication matricielle de l’Eq.7.9.

RL 0 =









1 0 0

0 1 0

0 0 1









RG

(7.8)

RL i =









(ui)x (vi)x (wi)x

(ui)y (vi)y (wi)y

(ui)z (vi)z (wi)z









RG

= RL i−1.









cos (φ) −cos (θ) sin (φ) sin (θ) sin (φ)

sin (φ) cos (θ) cos (φ) −sin (θ) cos (φ)

0 sin (θ) cos (θ)









(7.9)

Le repère fixe est utilisé pour suivre la position du photon après chaque événement de

dispersion. Le photon entre dans le milieu en (X = 0, Y = 0, Z = 0) perpendiculairement

à l’interface puis se propagent dans la direction Z sur une distance d0 calculée par l’Eq.7.2.

Puis après chaque événement de dispersion, le positionnement du photon (Xi, Yi, Zi) est

calculé dans le repère global à partir de la position antécédente (Xi−1, Yi−1, Zi−1) et des

variables de dispersion φi, θi et di comme l’indique l’Eq.7.10.









Xi

Yi

Zi









=









Xi−1 + di. (wi)x

Yi−1 + di. (wi)y

Zi−1 + di. (wi)z









(7.10)

A chaque événement de dispersion, nous attribuons une transmission totale de l’énergie

au photon dans la direction (θi, φi) (principe des simulations de Monte Carlo).

7.1.5 Sortie des photons

Les simulations sont effectuées en milieu d’une épaisseur de 10 lTR, c’est à dire en milieu

relativement épais. Les photons qui passent le plan supérieur Z = 10 lTR sont considé-

rés comme perdus. Le pourcentage de photons atteignant cette profondeur est alors de

quelques pourcents.

Nous choisissons de récupérer les photons rétrodiffusés dans un plan de sortie (plan

Z = 0) d’une dimension de 10 lTR de coté avec une résolution spatiale de lTR/50. Nous

sélectionnerons seulement les photons quittant le milieu verticalement avec un angle de
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sortie θrétrodiffusé ≤ arctan (0, 1) = 5, 7◦. L’angle de sortie correspond aux conditions expé-

rimentales ; le capteur CCD a une dimension de 1 cm de coté et il est positionné à environ

10 cm de l’échantillon. Ces conditions de sortie limitent à environ 15% la proportion de

photons détéctés par rapport aux photons émis.

Après la sortie d’un photon du milieu, il est nécessaire d’exprimer son état de pola-

risation issu de la (n + 1)ime dispersion dans le repère global. Il faut alors effectuer une

rotation inverse finale R (φ) du vecteur de Stokes où φ est l’angle azimutale de sortie défini

selon l’Eq.7.11 avec (un)x et (un)y les composantes finales du vecteur ~u du repère local

dans le repère global.

φ = arctan
(

(un)x / (un)y

)

(7.11)

Au final l’expression du vecteur de Stokes d’un photon après n événements de disper-

sion est traduite par la relation de l’Eq.7.12.

SRétrodiffusé = R (φ)M (θn)R (φn)M (θn−1)R (φn−1) . . .

. . .M (θ2)R (φ2)M (θ1)R (φ1)SIncident

(7.12)

7.1.6 Calcul de la matrice de Mueller

Pour obtenir une matrice complète de Mueller issue des simulations de Monte Carlo,

nous devons réaliser quatre simulations distinctes avec quatre polarisations initiales diffé-

rentes (SP1
= (1100)T , SP2

= (1010)T , SP3
= (1001)T et SP4

= (100 − 1)T ). Pour chacun

des états de polarisation incident SPk
(k = 1, 2, 3, 4) nous récupérons les images 2D de l’in-

tensité sur les quatre composantes de Stokes IPk
. L’intensité obtenue répond à l’Eq.7.13

où MMueller est la matrice de Mueller rétrodiffusée du milieu.

IP = MMuellerSP














I0
Pk

I1
Pk

I2
Pk

I3
Pk















=















M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44





























S0
Pk

S1
Pk

S2
Pk

S3
Pk















(7.13)

En collectant les résultats des quatre simulations nous formons la matrice Intensité I

(Eq.7.14) pour la base de Stokes incidente (Eq.7.15).
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I =















I0
P1

I0
P2

I0
P3

I0
P4

I1
P1

I1
P2

I1
P3

I1
P4

I2
P1

I2
P2

I2
P3

I2
P4

I3
P1

I3
P2

I3
P3

I3
P4















(7.14)

S =















S0
P1

S0
P2

S0
P3

S0
P4

S1
P1

S1
P2

S1
P3

S1
P4

S2
P1

S2
P2

S2
P3

S2
P4

S3
P1

S3
P2

S3
P3

S3
P4















(7.15)

La matrice de Mueller se déduit de la relation matricielle Eq.7.16.

MMueller = IS−1 (7.16)

7.1.7 Représentation de la matrice de Mueller

La Fig.7.3 est un exemple de représentation de matrices de Mueller en fausses couleurs

avec l’échelle logarithmique signée (Eq.5.20). La dimension des images est de 10 lTR soit

500 pixels. Pour une meilleur représentation visuelle, nous avons ajouté un lisage supplé-

mentaire avec une moyenne mobile sur une surface de 10 pixels de coté.

7.1.8 Temps de calcul

La programmation des simulations de Monte Carlo est effectuée en Delphi (Borland

corp.). Une programmation fonctionnant en écran de veille pour pc fut mise en place. Il a

fallu environ un an sur 20 PC (Processeur moyen 2, 4 GHz) du LEMTA pour calculer la

base de données en x et m. Les simulations x = 20, 00 pour m = 0, 90 et m = 1, 05 n’ont

pas été réalisées, la seconde à elle seule représenterait un temps de calcul de quatre années

sur un ordinateur standard (2, 4 GHz).

7.2 Analyses

L’analyse des 110 simulations de Matrice de Muller se décompose en plusieurs étapes.

Après l’observation de l’élément M11, nous allons rechercher les symétries présentes dans

l’ensemble des éléments. Puis nous porterons notre attention sur l’élément particulier M44

de la matrice de Mueller. Nous conclurons sur le choix des paramètres discriminants rete-

nus.
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Fig. 7.3 Simulations de Monte Carlo normalisées a) Rayleigh, b) x = 2 m = 1, 1 et c) x = 2

m = 1, 8 en échelle logarithmique signée. La taille des images est de 10 lTR de coté.
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7.2.1 Normalisation et transport scalaire

Le résultat des simulations est donné dans un espace normalisé ρ = lTR par contre

l’intensité I est donnée en nombre de photon. Pour rendre cette intensité normalisée

Inorm nous devons utiliser l’expression INorm = I/
(

e2pixelNbPhoton

)

où epixel = 0, 02

est la taille de résolution des simulations et NbPhoton est le nombre de photon reçu

dans l’élément M11. En Rayleigh pour 100 millions de photons envoyés, nous récupé-

rons NbPhoton Rayleigh = 15, 2 millions.

L’élément M11 isotrope représente le transport scalaire de lumière incohérente non-

polarisée (Énergie). La Fig.7.4.a montre les décroissances radiales d’intensité pour diffé-

rentes valeurs de x et de m. La représentation normalisée
(

Intensité.l2TR

)

en fonction de

(ρ/lTR) donne un léger décalage des décroissances radiales d’intensité et le modèle de Has-

kell (Eq.4.7). Pour obtenir une parfaite superposition de l’ensemble des courbes de ρ = lTR

à l’infini nous utilisons alors un facteur correctif Fig.7.4.b. Ce facteur fc correspondant à

une modification du flux diffusif suivant l’Eq.7.17, il vaut au maximum 30%.

Fig. 7.4 Variations radiales d’intensité obtenues (a) et corrigées (b) pour différentes simula-

tions de Monte Carlo en x et m. La ligne continue est le modèle de Haskell (Eq.4.7).
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INorm =
I

e2pixel

fc

NbPhotonRayleigh
(7.17)

7.2.2 Symétries des éléments non isotropes

L’ensemble des éléments hormis les éléments M11, M44, M41 = 0 et M14 = 0 sont non

isotropes et π périodiques. Nous avons dès lors étudié les éléments sur une période π. La

référence angulaire choisie est représentée dans la Fig.7.5.

Fig. 7.5 Référence angulaire pour l’analyse des lobes de polarisation

Dans la Fig.7.6 nous avons représenté les éléments qui sont identiques par rotation.

Les variations radiales d’intensité sont calculées sur une couronne de rayon ρ/lTR = 1

et d’épaisseur lTR/5. Nous avons choisi cette couronne car les effets de polarisation sont

maximums en lTR dans le domaine universel de transport scalaire (ρ ≥ lTR) de lumière non-

polarisée. De plus la moyenne radiale lTR ± lTR/10 permet de diminuer le bruit numérique

des simulations.

A partir des représentations graphiques, nous déduisons les relations de symétrie (Eq.7.18)

entre les éléments de la matrice de Mueller. L’angle entre crochets indique la rotation néces-

saire à effectuer dans le sens des aiguilles d’une montre pour une superposition des images.



























M12 = M21 = M13 [π/4] = M31 [π/4]

M22 = M33 [π/4]

M32 = M23

M34 = M43 [π/2] = M24 [π/4] = M42 [−π/4]

(Fig.7.6.a)

(Fig.7.6.b)

(Fig.7.6.c)

(Fig.7.6.d)

(7.18)

7.2.3 Informations issues des éléments non isotropes

Les douze éléments non isotropes sont des symétries par rotation des quatre éléments

M12, M22, M23 et M34. Les éléments du groupe M34 ne seront pas exploités, leur intensité
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Fig. 7.6 Recherche des symétries par rotation des éléments non isotropes

est très faible. L’amplitude des effets de polarisation de ces éléments est toujours inférieure

à 1% comparée à l’amplitude des éléments du groupe M12. Ces éléments ne sont pas ac-

cessibles avec le dispositif expérimental dont l’erreur de calibration est de 3, 2%.

Pour chacun des éléments analysés, nous ajustons la variation angulaire d’intensité avec

une courbe sinusöıdale (Eq.7.19) caractérisée par une valeur moyenne et une amplitude.

L’amplitude est comptée positivement quand la probabilité de dispersion d’une polarisa-

tion linéaire est perpendiculaire à son axe (exemple Rayleigh Fig.7.3.a et x = 2 ; m = 1, 1

Fig.7.3.b). L’amplitude sera affectée d’un signe négatif lors de l’inversion de polarisation

(exemple et x = 2 ; m = 1, 8 Fig.7.3.c). Le Tab.7.1 récapitule les valeurs des fréquences et

des déphasages des éléments.

I = Moyenne + Amplitude. sin (Fréquence.θ + Déphasage) (7.19)

L’ajustement du modèle sur chacune des simulations conduit aux résultats de la Fig.7.7.

Les données présentées sont des moyennes obtenues par groupe d’éléments identiques par

rotation. Nous avons quatre entités discriminantes : les amplitudes des trois éléments M12,

M22 et M23 ainsi que la valeur moyenne de l’élément M22.
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Élément Fréquence Déphasage

M12, M21 2 π/2

M13, M31 2 π

M22 4 π/2

M33 4 −π/2

M23, M32 4 π

Élément Fréquence Déphasage

M24 2 π

M42 2 −π

M34 2 −π/2

M43 2 π/2

Tab. 7.1 Fréquences et déphasages des éléments de la matrice de Mueller

Fig. 7.7 Amplitudes et Moyennes des variations radiales d’intensité des éléments M12, M22 et

M23. (+ m = 0, 75, ◦ m = 0, 90, • m = 1, 10, × m = 1, 20, 4 m = 1, 30, ♦ m = 1, 50,

� m = 1, 80)
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7.2.4 Informations présentes dans l’élément M44

L’élément M44 se distingue des autres par une variation radiale d’intensité à la fois

isotrope angulairement et non monotone radialement. L’intensité au coeur de la tache est

positive et à l’extérieur négative comme nous le voyons sur la Fig.7.8.

Fig. 7.8 Variation radiale d’intensité de l’élément M44 pour x = 3 et m = 1, 1.

Dans l’optique d’une recherche d’informations discriminantes, nous avons réalisé une

analyse sur le point d’inversion de l’intensité radiale (x2; 0) et sur le point d’intensité

minimum (x3; y3). La Fig.7.9 apporte des comparaisons des trois grandeurs (x2, x3 et y3)

entre elles. Pour chacun des deux graphiques, nous observons une courbe unique, nous

indiquant qu’une seule information est présente dans l’élément M44. Nous choisissons de

retenir l’information x3.

7.2.5 Paramètres discriminants

Nous avons retenu cinq informations significatives présentes dans la matrice de Muel-

ler : x3 de M44, l’amplitude de M21, l’amplitude de M22, l’amplitude de M23 et la moyenne

de M22. Afin d’observer les relations entre ces paramètres, nous avons représenté quatre

graphiques donnés dans la Fig.7.10. Nous voyons une bonne superposition de l’ensemble des

points dans les quatre représentations. Le graphique Fig.7.10.c montre que l’amplitude de

M22 est identique à l’amplitude de M23. La Fig.7.10.a traduit une corrélation non-linéaire

entre l’amplitude de M22 et la moyenne de M22. Dans le dernier graphique, Fig.7.10.d, la

position radiale x3 est corrélée non-linéairement avec la moyenne de M22. Nous retrouvons
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Fig. 7.9 Corrélations entre les informations contenues dans l’élément M44. (+ m = 0, 75, ◦ m =

0, 90, • m = 1, 10, × m = 1, 20, 4 m = 1, 30, ♦ m = 1, 50, � m = 1, 80)

également une relation non linéaire entre l’amplitude de M21 et la moyenne de M22 dans

Fig.7.10.b.

La complexité de l’ensemble des éléments n’est pas une source de multiples renseigne-

ments sur le milieu diffusant. Une unique information exploitable permet de représenter

les effets de polarisation sur l’ensemble des éléments de la matrice de Mueller en lTR.

Néanmoins la forte non-linéarité observée dans la Fig.7.10.b montre qu’il est préférable de

caractériser les effets de polarisation soit avec l’amplitude de polarisation de M21 ou avec

la moyenne de polarisation de M22. Nous choisirons l’amplitude de M21 quand celle-ci sera

plus petite que 1, 25.10−3 et la moyenne de M22 quand sa valeur sera plus importante que

3, 5.10−3.

Le transport des effets de polarisation dépend à la fois du paramètre de taille x et

du rapport des indices optiques m. Une information sur ces deux paramètres peut être

extraite dans la matrice de Mueller. Par conséquent connaissant un paramètre il est pos-

sible de déterminer le second. Dans les études expérimentales qui vont suivre, nous ferons

principalement l’hypothèse que les propriétés optiques sont toujours connues et ainsi nous

déterminerons une taille indépendamment de la fraction volumique.
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Fig. 7.10 Corrélations entre les informations issues de la matrice de Mueller. (+ m = 0, 75,

◦ m = 0, 90, • m = 1, 10, × m = 1, 20, 4 m = 1, 30, ♦ m = 1, 50, � m = 1, 80)

7.3 Retour sur les fonctions de Mie

L’analyse des simulations complètes de Monte Carlo a montré que la matrice de Mueller

normalisée en intensité
(

I.l2TR

)

et en espace (ρ/lTR) ne dépendait que des deux paramètres

x et m de l’événement local de dispersion. Nous avons cherché à comparer les paramètres

discriminants de la matrice de Mueller, l’amplitude et la moyenne des effets de polarisation

linéaire, avec les fonctions de Mie associées aux effets de polarisation : bx,m (θ) dx,m (θ) et

ex,m (θ)

La meilleure corrélation entre les effets de polarisations mesurés et les fonctions issues

de la théorie de Mie a été obtenue avec le paramètre Id calculé suivant l’Eq.7.20.

Id =

∫ π

θ=0
dx,m (θ) sin (θ) dθ (7.20)

Nous avons une très bonne correspondance sur l’ensemble des points (quel que soit

x et quel que soit m) entre le paramètre Id et les effets de polarisation (Fig.7.11.a). Un
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Fig. 7.11 Corrélations entre les paramètres de diffusion des simulations de Monte Carlo et la

grandeur de dispersion de l’événement local (Id). a) Moyenne de polarisation (Ligne :

Eq.7.21), b) Amplitude de polarisation. (+ m = 0, 75, ◦ m = 0, 90, • m = 1, 10,

× m = 1, 20, 4 m = 1, 30, ♦ m = 1, 50, � m = 1, 80).

polynôme de second degré (Eq.7.21) relie directement un paramètre discriminant de la

matrice de Mueller expérimentale (la valeur moyenne des effets de polarisation Fig.7.11.a)

à la fonction de Mie dx,m (θ) et donc aux paramètres x et m.

Id = −2, 86.103Moyenne2 − 26, 8Moyenne + 1 (7.21)

L’information présente au niveau de l’événement local de dispersion de distance ca-

ractéristique ls (quelque dizaine de nanomètres) est transmise à l’échelle supérieure de la

diffusion de distance caractéristique lTR (de l’ordre du millimètre).

Connaissant la relation Eq.7.21, nous pouvons directement réaliser l’inversion de l’in-

formation présente dans la matrice de Mueller avec les paramètres x et m. Cette possibilité

ne sera pas utilisée par la suite. Elle n’apporte aucune amélioration sur la précision du

résultat de l’inversion qui sera toujours réalisée par une interpolation linéaire en x et m

sur des effets de polarisation (Fig.7.7.a et Fig.7.7.d).

Le facteur limitant réside dans la précision de mesure des effets de polarisation.

7.4 Conclusion

Ce chapitre constitue une modélisation du transport incohérent de lumière polarisée

dans des suspensions concentrées. À partir de l’événement local de dispersion construit
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avec la théorie de Mie, nous avons développé des simulations complètes de Monte Carlo.

Le transport de lumière polarisée se modélise à partir des trois paramètres que sont le

paramètre de taille x, le paramètre optique m et de la fraction volumique ϕv . Nous avons

développé des simulations normalisées en intensité
(

I.l2TR

)

et en espace (ρ/lTR) pour rendre

ces simulations indépendantes de la concentration ϕv. Nous avons ainsi pu construire une

base de données ne dépendant que de l’événement local de dispersion c’est à dire de x et

de m.

L’analyse des simulations par regroupement des éléments (excepté les éléments M42,

M24, M43 et M34) semble montrer qu’essentiellement une seule information est présente

dans l’ensemble des effets de transport de polarisation. Dans l’objectif d’utiliser la matrice

de Mueller pour caractériser une suspension, nous avons retenu deux mesures : la valeur

moyenne de polarisation des éléments M22 et M33 et l’amplitude de polarisation des élé-

ments M12, M21, M13 et M31. Ces deux informations caractéristiques de la diffusion sur

une suspension sont directement liées à l’événement local de dispersion sur une particule.

Les effets de polarisation (en lTR) d’une matrice de Mueller expérimentale permettent

par comparaison à la base de données des simulations de Monte Carlo (Amplitude Fig.7.7.a

et valeur moyenne Fig.7.7.d) de caractériser une taille moyenne de particule x connaissant

les propriétés optiques m ou inversement de caractériser un rapport d’indice optique m

connaissant la taille moyenne des particules x. La caractérisation est de plus indépendante

de la concentration volumique ϕv avec la normalisation par la longueur de transport lTR.

Ce chapitre met fin à l’étude théorique. Dans le chapitre suivant, nous validerons la

technique de mesure de taille sur des émulsions (avec m connu).
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Validations

Ce chapitre constitue une validation expérimentale de la théorie. Nous y montrerons le

potentiel de la technique sur la mesure granulométrique en diffusion non-dépendante. Nous

utiliserons des systèmes déjà connus et caractérisés pour vérifier les principes développés

précédemment. Nous étudierons des émulsions d’huile dans de l’eau de différentes tailles

moyennes, concentrations et polydispersités.

La première validation portera sur le transport isotrope de lumière non polarisée. Nous

comparerons nos mesures expérimentales de longueur de transport avec la théorie de Mie

en y incluant la diffusion dépendante. Puis nous validerons le principe de la mesure de taille

avec le transport de polarisation. Nous terminerons ce chapitre par un développement des

restrictions théoriques et expérimentales.

8.1 Matériaux : Diverses émulsions

Nous avons réalisé la validation de la technique sur des émulsions d’huile dans de l’eau

préparées par Firmenich SA. Ces émulsions présentent différents intérêts. Premièrement,

elles ont un aspect parfaitement blanc, l’absorption y est négligeable (la → ∞). Deuxième-

ment le processus de fabrication et les proportions d’huile, d’eau et de surfactant (Tab.8.1)

rendent ces émulsions très stables à la fois dans le temps et également à la dilution dans

l’eau.

L’huile utilisée est du Neobee de masse volumique ρNeobee = 948 kg/m3 et d’indice de

réfraction Np = 1, 4564. L’indice du milieu suspendant, l’eau, est égal à Nm = 1, 33 et

sa masse volumique ρEau = 1 000kg/m3. Les émulgateurs utilisés sont de la lecithine de
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riz (Emulsion1 et Emulsion6), du solutol 80K (Emulsion3), du citrem (Emulsion4) et du

POE (Emulsion2 et Emulsion5).

Les distributions de tailles ont été mesurées sur un granulométre Malvern Mastersizer X

et sont présentées sur la Fig.8.1. Les six émulsions sont de dispersité très variée : l’émulsion

2 est considérée comme monodiperse, les émulsions 1, 3 et 4 ont une polydipersité moyenne,

l’émulsion 6 présente une très grande polydipersité et enfin l’émulsion 5 à une distribution

bimodale. À partir des distributions (Classe de taille ai de fraction volumique ϕv,i), nous

calculons les rayons moyens en volume a[4; 3] (Eq.8.1) correspondant à chaque émulsion

(Tab.8.1).

a [4; 3] =

∑

a4
iϕv,i

∑

a3
iϕv,i

(8.1)

Nom
Nom Fractions massiques a[4, 3]

x = 2πaNm

λindustriel Surfactant Huile Eau (µm)

Emulsion1 BC014 0,30 0,40 0,30 0,20 2,6

Emulsion2 EC-06-01-a 0,06 0,60 0,34 0,22 3,0

Emulsion3 STTO46 0,03 0,60 0,37 0,25 3,3

Emulsion4 STT063 0,02 0,60 0,38 0,37 4,9

Emulsion5 EC-08-01-a 0,06 0,40 0,34 0,97 12,4

Emulsion6 BC010 0,20 0,40 0,40 1,10 14,5

Tab. 8.1 Fractions massiques en huile, émulsifiant et eau pour chaque émulsion. a[4, 3] est le

rayon moyen mesuré par MastersizerX

8.2 Validation du transport scalaire

Dans un premier temps nous allons valider le transport scalaire isotrope de lumière

non-polarisée. Pour ce faire nous réalisons des dilutions successives des émulsions 2, 4 et 5.

Nous ajustons pour chaque dilution le modèle de Haskell (Eq.4.7) pour obtenir la longueur

de transport correspondante.

La validation est réalisée par comparaison des mesures de lTR avec la théorie de Mie

avec l’utilisation de la correction de Percus-Yevick. Nous disposons de l’ensemble des para-

mètres pour calculer la théorie. Les propriétés optiques (m ≈ 1, 1), les tailles moyennes en

volume (a [4, 3] MatersizerX) et les fractions volumiques sont connues. Les trois graphiques

de la Fig.8.2 montrent la bonne cohérence entre les mesures expérimentales et les valeurs
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Fig. 8.1 Distributions de taille des émulsions éudiées obtenues par MastersizerX

théoriques.

Nous observons que la détermination de la longueur de transport lTR est en très bon

accord, en milieu dilué, avec la théorie de Mie. En milieu plus concentré (ϕv ≥ 10%), la

correction de Percus-Yevick prend bien en compte la diffusion dépendante, même si l’on

considére les émulsions monodisperses de taille a [4, 3]. La correction de Percus-Yevick est

en effet calculée pour des sphères homogènes de taille identique. Cette correction est donc

d’autant plus valide que l’émulsion est de polydispersité réduite. C’est notament le cas de

l’émulsion monodisperse Emulsion2 où les points expérimentaux sont parfaitement corrélés

avec la courbe théorique. Cette correction reste valable jusqu’à environs 50% en volume.

Les barres d’erreur horizontales sont données par l’incertitude sur la concentration. Les

barres verticales sont de 10% ; elle correspondent à la précision retenue sur la determina-

tion de longueur de transport (lTR) par l’ajustement du modèle de Haskell.

Le calcul théorique de la longueur de transport est réalisé en considérant la taille

moyenne en volume de particule (a [4, 3], Tab.8.1). Nous avons en effet vérifié par ailleurs

que le calcul utilisant la distribution de taille donne des valeurs de longueur de transport

équivalentes (Baravian et al., 2005).
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Fig. 8.2 Validation du transport scalaire isotrope de lumière : Comparaison entre la théorie(Mie

et Mie Percus-Yevick) et les mesures expérimentales de lTR des émulsions. a : Émul-

sion2 avec a [4, 3] = 220nm. b : Émulsion4 avec a [4, 3] = 375nm. b : Émulsion5 avec

a [4, 3] = 970 nm.
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de Monte Carlo

8.3 Comparaison des matrices de Mueller expérimentales

avec les simulations de Monte Carlo

La première comparaison est qualitative avec l’observation des similitudes entre la

matrice de Mueller expérimentale et la matrice correspondante issue de la simulation de

Monte Carlo.

Fig. 8.3 Comparaison des matrices de Mueller en espace et intensité normalisés : a :Simulation

de Monte Carlo x = 3 et m = 1, 1 et b :Expérimentale Emulsion2 (Concentration 1, 7%,

Rayon moyen 220 nm lTR = 0, 80 mm)
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Chapitre 8. Validations

La Fig.8.3 est un exemple de la bonne cohérence visuelle entre une matrice expérimen-

tale et sa simulation correspondante. Les deux matrices sont représentées en espace (ρ/lTR)

et intensité
(

I.l2TR

)

normalisés. Des faibles différences sont présentes dans les éléments de

plus faible intensité (M14, M24, M34, M41, M42 et M43). Les erreurs expérimentales sur ces

éléments sont visuellement amplifiées par la représentation logarithmique signée en fausses

couleurs qui favorise les niveaux de faible intensité.

Nous effectuons à présent une comparaison quantitative. L’analyse des matrices de

Mueller est toujours effectuée sur une couronne de rayon lTR ± lTR/10. Nous observons les

variations angulaires d’intensité de chacun des éléments. La Fig.8.4 récapitule les varia-

tions de l’exemple illustré par la Fig.8.3. Nous avons un très bon accord entre les données

expérimentales et les simulations de Monte Carlo. La déviation des données expérimen-

tales observée à 90◦ sur les éléments M11 et M44 est due à l’intensité élevée à l’impact du

faisceau laser induisant une ligne lumineuse (effet ”blooming”).

8.4 Comparaison entre les mesures expérimentales et les si-

mulations de Monte Carlo

Nous allons valider ci-dessous le principe de la mesure d’une taille moyenne dans les

milieux opaques par l’observation des effets de polarisation. Seule la connaissance des pro-

priétés optiques est nécessaire à la mesure d’une taille qui est à priori indépendante de la

fraction volumique. En effet, la normalisation de la matrice de Mueller par la longueur de

transport rend cette détermination indépendante de la fraction volumique en objets dif-

fusants. Nous appliquons la technique sur les six émulsions précédemment décrites. Nous

avons dilué ces six émulsions à quelques pourcents. Nous nous plaçons ainsi dans le do-

maine optimum de fonctionnement du dispositif. En particulier, nous nous situons ainsi

en dehors du régime de diffusion dépendante avec des longueurs de transport voisine du

millimètre.

La méthodologie de la validation expérimentale se décompose en trois étapes.

1. A partir de l’élément M11, nous déterminons la longueur de transport lTR (Fig.8.2)

par ajustement du modèle de Haskell (Eq.4.7) sur la décroissance radiale d’intensité.

2. Nous récupérons sur l’ensemble des éléments de la matrice de Mueller les variations

angulaires d’intensité sur des couronnes de rayon lTR ± lTR/10. Ces variations sont

normalisées en multipliant l’intensité par l2TR. Puis nous effectuons un ajustement

sinusöıdal de l’intensité identiquement à celui réalisé sur les simulations de Monte
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Monte Carlo

Fig. 8.4 Comparaison des variations angulaires d’intensité de chaque élément de la matrice de

Mueller en lTR. (− : Simulation de Monte Carlo x = 3 et m = 1.1 et :• Émulsion2

(Concentration 2%, Rayon moyen 220 nm)

Carlo (Eq.7.19). Nous retenons deux valeurs. La première, l’amplitude de polarisa-

tion, est la moyenne des quatre amplitudes ajustées sur les éléments M12, M13, M21

et M31 identiques par rotation. La seconde est une valeur moyenne de polarisation.

Elle est le résultat de la moyenne de l’ajustement sur les deux éléments M22 et M33.

3. Nous comparons l’amplitude et la valeur moyenne des effets de polarisation multi-

pliés par l2TR pour chaque taille a [4, 3] aux simulations de monte Carlo (Fig.8.5).

La validation sur les six émulsions est présentée dans la Fig.8.5. Nous retrouvons les

données des simulations de Monte Carlo pour m = 1, 1 qui correspond au rapport d’indice

optique des émulsions. Sur ces deux graphiques nous avons ajouté les mesures expérimen-

tales (en rouge) des effets de polarisation obtenus sur les émulsions. Les abscisses des points
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expérimentaux correspondent aux mesures des rayons moyens en volume (a [4, 3]) par gra-

nulométre. La confrontation des points expérimentaux avec les simulations de Monte Carlo

est bonne. Cette confrontation est réalisée sans connaissance de la fraction volumique de

l’émulsion.

Fig. 8.5 Validation de la mesure de taille par analyse des effets de polarisation (a : Amplitude,

b : Moyenne). (• Simulation de Monte Carlo m = 1, 10, × Émulsion1, + Émulsion2,

4 Émulsion3, � Émulsion4, ◦ Émulsion5 et ♦ Émulsion6 )

Nous avons montré la dépendance des effets de polarisation en fonction de la taille

moyenne des objets diffusants. A partir des simulations de Monte Carlo (Fig.7.7.a et

Fig.7.7.d) et connaissant le rapport des propriétés optiques, la mesure des effets de pola-

risation permet de déduire une taille moyenne indépendamment de la concentration. Une

interpolation linéaire est réalisée sur les simulation de Monte Carlo aussi bien sur le rapport
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d’indice optique m que sur le paramètre de taille x. La mesure de taille est indépendante

de la polydispersité. Le transport des effets de polarisations n’est en effet sensible qu’à la

taille moyenne en volume des émulsions.

Les effets de polarisation sont d’autant plus importants que la taille des particules sont

petites. Pour la gammes de taille des émulsions [200 nm; 1 100 nm] (rayon), les effets de

polarisation sont trois fois plus importants sur l’amplitude que sur la valeur moyenne.

Nous étudierons cependant dans le prochain paragraphe aussi bien l’inversion en taille et

en fraction volumique sur l’amplitude et la valeur moyenne des effets de polarisation. La

pertinence de la valeur moyenne des effets de polarisation concerne des particules dont le

rayon est typiquement inférieur à 150 nm. En effet, nous voyons alors que l’amplitude ne

dépend plus de la taille des particules dans la gamme [50 nm; 150 nm] (Fig.8.5).

8.5 Mesures simultanées de la taille et de la concentration

des suspensions

En utilisant les dilutions successives des émulsions 2, 4 et 5, nous souhaitons montrer

que la mesure d’une taille moyenne des particules est indépendante de leur fraction vo-

lumique. De plus en utilisant l’inversion de Mie sur la longueur de transport lTR, nous

déterminons cette fraction volumique. Nous utilisons les mêmes émulsions avec lesquelles

nous avons validé le transport scalaire de la lumière (lTR, Fig.8.2).

Pour chaque dilution des trois émulsions, nous avons mesuré les effets de polarisa-

tion sur la couronne de rayon lTR ± lTR/10. La Fig.8.6 récapitule l’ensemble les mesures

d’amplitude de moyenne de polarisation. L’abscisse de chacun des points correspond à la

fraction volumique calculée lors de chacune des dilutions ϕv ,th. Nous ajoutons aux points

expérimentaux, des lignes continues horizontales donnant l’amplitude de polarisation des

simulations de Monte Carlo pour une taille de particule donnée par la mesure granulomé-

trique du Malvern MastersizerX.

Deux résultats importants sont obtenus dans ces graphiques. Premièrement, nous ob-

servons des effets de polarisation expérimentaux constants et conforme aux prédictions

des simulations de Monte Carlo pour les émulsions peu concentrées (ϕv < 5%). La mesure

de taille est donc bien indépendante de la fraction volumique. Deuxièmement, pour des

concentrations plus importantes, nous visualisons une déviation importante des effets de

polarisation. Nous expliquerons ces déviations dans la prochaine section intitulée ”Restric-
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Fig. 8.6 Dépendance des effets de polarisation (a :Amplitude et b :Moyenne) avec la fraction

volumique. Les lignes représentent les valeurs issues des simulations de Monte Carlo

avec m = 1, 1. Rouge : + Émulsion2, ligne : simulation x = 3 ; Bleu � Émulsion4,

ligne : x = 4, 9 ; Vert ◦ Émulsion5, ligne : x = 12, 4

tions du dispositif”.

En considérant que les indices optiques sont connus (eau 1, 33 et huile 1, 4564), nous

réalisons une mesure de la taille avec l’amplitude ou la valeur moyenne de polarisation par

comparaison aux simulations de Monte Carlo. Les tailles obtenues pour les trois émulsions

sont représentées dans les graphiques Fig.8.7.a et Fig.8.7.b. L’axe des abscisses corres-

pond aux fractions volumiques ”calculées” lors des dilutions. La mesure de taille est quasi

constante pour des concentrations volumiques inférieures à 5%. Ces mesures sont en accord

avec les mesures effectuées en milieu très dilué par granulomètre Malvern (lignes continues

horizontales). Nous observons que nos mesures de taille sont plus précises pour de petites

particules (de rayon inférieur à 600 nm) où les effets de polarisation sont plus importants.

Pour les trois émulsions la mesure de taille à partir des amplitudes de polarisation est

meilleure car nous sommes dans le cas où l’amplitude de polarisation est supérieure à

3.5.10−3. Les tailles déduites des faibles valeurs moyennes d’amplitude (Émulsion5) sont

très sensibles aux erreurs de mesure du dispositif.

Connaissant maintenant la taille et les indices optiques, nous pouvons inverser la me-

sure de la longueur de transport lTR avec la théorie de Mie (Eq.4.11) pour déterminer une

fraction volumique dite ”mesurée” ϕv ,c donnée par l’Eq.8.2.
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ϕv ,c =
4
3πa

3

lTRCscat (a,m) (1 − g (a,m))
(8.2)

Les deux graphiques Fig.8.7.c et Fig.8.7.d donnent la comparaison entre les valeurs

”mesurées” et les valeurs ”calculées”. Nous obtenons une bonne corrélation des mesures

excepté en milieu concentré. Une petite erreur sur la taille mesurée se transforme en une

erreur très importante sur la fraction volumique car la longueur de transport est extrême-

ment dépendante de la taille.

Fig. 8.7 Mesure de taille et de fraction volumique ϕv ,c. a et b : Mesure de la taille à partir

des effets de polarisation (a : Amplitude, b : Moyenne) en fonction de la fraction

volumique théorique de dilution ϕv ,th. Les lignes continues représentent les mesures

de a[4 , 3] de Malvern (Vert 950 nm, Bleu 370 nm et Rouge 220 nm). c et d : Mesure de

la fraction volumique ϕv ,c en fonction de la fraction volumique théorique de dilution

ϕv ,th. + : Émulsion2, � : Émulsion4 et ◦ Émulsion5.
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Nous avons montré la bonne cohérence de la technique en milieu peu concentré. D’une

part les tailles des émulsions mesurées sont proches des tailles en volume données par le

granulomètre Malvern MastersizerX. D’autre part les fractions volumiques mesurées sont

semblables aux fractions volumiques calculées lors de la réalisation des dilutions. Nous

allons à présent tenter d’expliquer les limitations de la technique en milieu plus concentré.

8.6 Restrictions du dispositif

8.6.1 Influence de la diffusion dépendante

La première hypothèse pour expliquer les déviations des mesures de taille pour des

systèmes concentrés est la diffusion dépendante. Les simulations de Monte Carlo utilisées

pour obtenir la base de données sont normalisées par la longueur de transport et sont

indépendantes de la fraction volumique. Ces simulations ne considèrent exclusivement que

le domaine de diffusion non-dépendante.

Nous nous sommes basé sur les expérimentations de l’Émulsion2 pour deux raisons.

(i) Cette émulsion est la plus monodisperse, et l’approximation de Percus-Yevick pour le

calcul du facteur de structure est donc approprié (Fig.8.2.a). (ii) La taille moyenne de cette

émulsion est suffisamment petite devant la longueur d’onde pour montrer une influence de

la diffusion dépendante dès des fractions volumiques de l’ordre de 5%. Nous avons alors

procédé à une série de simulations en espace réel en y incluant le facteur de structure de

Percus-Yevick, pour m = 1, 1 et x = 3 à différentes fractions volumiques comprise entre

1% et 60%. Dans la Fig.8.8 nous récapitulons trois types de données : Les points expéri-

mentaux, la simulation normalisée correspondante (m = 1, 1 et x = 3) et les simulations

qui incluent la diffusion dépendante. La prise en compte de la diffusion dépendante dans

les simulations provoque bien une modification du transport des effets de polarisation pour

des fractions volumiques suppérieures à 20%.

L’influence de la diffusion dépendante n’explique pas la forte dépendance des effets de

polarisation avec la fraction volumique.

Pour comprendre le rôle de la diffusion dépendante sur le transport de polarisation,

nous avons réalisé trois autres séries de simulation pour les paramètres x = 0, 5, x = 1, 32

et x = 2, 5. Les quatre tailles permettent ainsi d’étudier l’influence de la diffusion dépen-

dante sur les amplitudes des effets de polarisation, Fig.8.9.
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Fig. 8.8 Influence du facteur de structure sur le transport des effets de polarisation (a : Am-

plitude, b : Moyenne) sur l’exemple de l’Emulsion2. + ; Mesures expérimentales pour

l’Emulsion2. Ligne continue : Simulation normalisée de Monte Carlo m = 1, 1 et x = 3.

Ligne avec les points : Simulations de Monte Carlo avec la diffusion dépendante

La prise en compte de la diffusion dépendante avec le facteur de structure de Pecus-

Yevick se répercute à la fois sur de fonction de phase pPY (x,m,ϕv , θ) Eq.4.13, sur le

facteur d’anisotropie optique gPY (x,m,ϕv) (Eq.4.15) et sur la section efficace de diffu-

sion Cscat,PY (x,m,ϕv) Eq.4.13. La longueur de transport lTR (Fig.8.2) caractéristique du

transport stationnaire de lumière non-polarisée intègre les modifications induites par la dif-

fusion dépendante de gPY (x,m,ϕv) et de Cscat,PY (x,m,ϕv). Comme la mesure des effets

de polarisation est normalisée par la longueur de transport lTR, l’influence de la diffusion

dépendante est partiellement prise en compte. Seule la modification du facteur de struc-

ture sur les fonctions de Mie ax,m (θ), bx,m (θ), dx,m (θ) et ex,m (θ) n’est totalement prise

en compte par la normalisation. Ceci explique que l’influence de la diffusion dépendante

ne soit présente que pour des fractions volumiques supérieures à 20%, alors que son ef-

fet sur la longueur de transport commence pour des fractions volumiques supérieures à 4%.

Les simulations de Monte Carlo présentées dans la Fig.8.9 montrent la non-influence

de la diffusion dépendante sur le transport de polarisation pour des particules en ap-

proximation de Rayleigh (x petit) ou pour des particules de taille importante. Pour ces

deux classes de particules, les fonctions de Mie pPY (x,m,ϕv , θ) (Fig.4.10.a et Fig.4.10.c),

ax,m (θ), bx,m (θ), dx,m (θ) et ex,m (θ) ne sont pas modifiées. La diffusion dépendante mo-

difie les fonctions de Mie dans la gamme de taille intermédiaire. Il sera donc nécessaire
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de réaliser au cas par cas des simulations de Monte Carlo pour étudier de tels systèmes

concentrés.

Fig. 8.9 Simulations de Monte Carlo : Influence du facteur de structure sur le transport des

effets de polarisation pour différentes tailles (a : Amplitude, b : Moyenne. Ligne

continue : Simulation normalisée de Monte Carlo (Remarque : Sur le graphique (b),

les lignes x = 2, 5 et x = 3 sont confondues). Ligne avec les points : Simulations de

Monte Carlo avec la diffusion dépendante

8.6.2 Influence de la taille du faisceau laser

La diffusion dépendante n’explique donc pas la modification des effets de polarisation

observée. Nous analysons à présent l’influence de la taille du faisceau laser Rlaser. En ef-

fet, lorsque la concentration en particule augmente, la longueur de transport diminue et

le rapport lTR/Rlaser devient non négligeable. Rappelons en effet que les simulations de

Monte Carlo considèrent que la taille du faisceau incident et infiniment petite (ponctuelle).

Or, dans nos expérimentations, le spot laser à un rayon de 75µm (Fig.5.6 et Eq.5.2). Pour

les différentes dilutions effectuées, nous avons mesuré des longueurs de transport variant

entre 60 µm et 2 mm. La dimension du spot laser peut donc perturber les mesures des

effets de polarisation effectuées à une distance lTR du centre d’impact. Pour étudier cette

perturbation, nous réalisons quelques simulations de Monte Carlo en substituant la source

ponctuelle par un tirage aléatoire de la position incidente définie par φ0 et ρ0/lTR. L’angle

φ0 est tiré de manière uniforme sur le domaine [0 ; 2π [ et ρ0/lTR est tiré sur une gaus-

sienne d’Eq.8.3
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y = exp



−

(

ρ0/lTR

Rlaser/lTR

)2


 (8.3)

Nous réalisons sur l’exemple de l’Emulsion2 cinq simulations (x = 3 et m = 1, 1)

pour des tailles de faisceau laser différentes. Les résultats des simulations présentés dans

la Fig.8.10 montrent que lorsque Rspot > lTR/4, les effets de polarisation sont fortement

modifiés.

Fig. 8.10 Modifications des effets de polarisation en lTR pour différentes tailles de faisceau

laser. Simulation de Monte Carlo x = 3 et m = 1, 1

Pour notre dispositif (Rlaser = 75 µm), une mesure est correcte si la longueur de

transport lTR est supérieure à quatre fois Rlaser soit 0.3 mm. La limitation sur la mesure

provient donc principalement de la taille du faisceau laser. Il serait possible d’améliorer

la focalisation du laser. La taille de 15 µm semble une limite physique de focalisation

raisonnable à la longueur d’onde utilisée (635 nm). Cette diminution permettrait d’étudier

la quasi-totalité des systèmes. En effet sur l’ensemble des systèmes que nous avons déjà

pu étudier, nous n’avons mesuré aucune longueur de transport inférieure à 60 µm.

Sur l’exemple de l’Emulsion2, nous validons l’influence de la source laser sur les effets

de polarisation, Fig.8.11. Pour différentes concentrations, nous réalisons des simulations

avec un rayon de faisceau Rlaser = 75 µm, x = 3 et m = 1, 1. Nous obtenons une très

bonne cohérence entre les mesures expérimentales et les simulations de Monte Carlo. La

dérive des effets de polarisation est donc essentiellement liée à la taille du faisceau laser.
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Fig. 8.11 Influences du faisceau laser sur les effets de polarisation (a : Amplitude, b : Moyenne)

sur l’exemple de l’Emulsion2. + ; Emulsion2. Ligne continue : Simulation normalisée

de Monte Carlo m = 1, 1 et x = 3. Ligne avec les points : Simulations de Monte

Carlo avec un faisceau laser de rayon 75 µm

8.7 Conclusion

Nous avons validé notre dispositif de transport incohérent de lumière polarisée sur des

émulsions d’huile dans de l’eau de tailles, de polydispersités et de fractions volumiques va-

riées. La matrice de Mueller rétrodiffusée est auto-suffisante pour mesurer directement une

taille moyenne indépendamment de la concentration connaissant les propriétés optiques.

Les tailles moyennes mesurées ont été confrontées avec succès avec les rayons volumiques

moyen a [4 , 3] obtenus par le granulomètre Malvern.

Avec l’inversion de Mie sur la longueur de transport lTR, nous pouvons simultanément

déterminer la concentration volumique en particules.

La technique s’applique à des tailles allant de quelques dizaines de nanomètres à

quelques micromètres. La fraction volumique en particules peut être comprise entre 0.1% et

50%. La sensibilité maximale de la technique est obtenue pour des particules de 200 nm de

rayon pour une source lumineuse de 635 nm de la longueur d’onde. Cet optimum peut-être

légerement décalé en changeant la longueur d’onde du faisceau laser incident. Le potentiel

de la technique est réduit par une limitation théorique (diffusion dépendante) et une limi-

tation expérimentale (taille du faisceau laser). La taille du spot laser doit nécessairement

être inférieure à quatre fois la longueur de transport lTR pour ne pas perturber la mesure

des effets de polarisation.
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La technique développée est non-intrusive et totalement indépendante de la tempé-

rature de l’échantillon. L’acquisition rapide de la matrice de Mueller (1 seconde) permet

l’étude des systèmes dynamiques en évolution rapide. Notons enfin que cette technique de

diffusion statique de la lumière est totalement indépendante de la nature de l’écoulement

(laminaire, instable, turbulent). La vitesse de propagation des effets de polarisation (vi-

tesse de la lumière) sera toujours grande devant la vitesse de mouvement des particules.

Nous développerons dans le chapitre suivant une application du dispositif avec la ca-

ractérisation du mécanisme de coacervation complexe.
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Chapitre 9

Application de la technique à

la coacervation complexe

Il convenait de donner un phénomène qui nous permette de qualifier notre méthode

de détermination de la taille d’objets et de leur concentration. Nous avons choisi notre

exemple chez les bio-polyméristes : La coacervation complexe entre un polysaccharide et

une protéine.

Nous débuterons ce chapitre avec une brève description du mécanisme de coacervation

et du système utilisé. Puis nous exposerons le suivi de la taille et de la concentration lors

de la réaction de coacervation contrôlée en fonction du pH.

9.1 Système étudié

9.1.1 La coacervation complexe

Le terme de ”coacervation complexe” est associé au mécanisme de séparation de phase

provoqué par l’interaction de deux colloı̈des de charge opposée. La phase concentrée est

nommée le coacervat. La séparation de phase par association de polymères dans l’eau se

produit sous l’effet de l’attraction électrostatique entre les composés.

La coacervation de protéines et de polysaccharides anioniques présente un intérêt pra-

tique et théorique. L’association complexe en solution de deux composés peut être vue

comme une nouvelle entité collöıdale. Il y a coexistence entre une phase colloı̈dale très

diluée (la solution d’équilibre) et une phase colloı̈dale très concentrée (les coacervats). Les

particules complexes formées sont neutres. Historiquement, les premières études de coa-
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cervation ont été menées pour comprendre l’apparition de la vie. En effet les coacervats

ressemblent étroitement à des cellules vivantes primitives.

Le mécanisme de coacervation est contrôlé directement par le pH caractérisant la

concentration de charges (anions et protons) présentes dans la solution. En milieu neutre

(pH = 7), la protéine de charge positive est entourée d’un nuage ionique négatif et le

polysaccharide de charge négative est entouré d’un nuage positif. La protéine et le poly-

saccharide sont en attraction via leur nuage ionique respectif. Des zones hétérogènes en

concentration sont ainsi formées. La coacervation en milieu acide (pH < 7) s’apparente à

une densification des hétérogénéités induite par l’ajout de charges. Si la solution est suffi-

sament acide, les deux phases liquides se transforment en une phase liquide et une phase

précipitée de coacervats. La structure de la phase concentrée est complexe. Elle ressemble

à une phase continue de polymère où la protéine est répandue autour du polysaccharide

Fig.9.1. La coacervation présente un vif intérêt industriel dans l’encapsulation. Elle ap-

porte également des éléments de compréhension des systèmes biologiques. L’interaction

entre l’ADN et les protéines de transcription correspond en effet à un mécanisme de coa-

cervation.

Fig. 9.1 Schéma de deux complexes assemblés de gomme arabique (ruban blanc) et de

β−lactoglobulin (sphère rouge). La protéine à un diamètre moyen de 2 nm et la

gomme arabique à un diamètre approximatif de 50 nm. (De-Kruif et al., 2004)

La réaction de coacervation étudiée dans ce rapport est une réaction entre la gomme

arabique (le polysaccharide, chargé négativement) et la β−lactoglobuline (la protéine,

chargée positivement) (Fig.9.1). Le mécanisme de coacervation sera contrôlé en pH par

l’ajout de Glucono-δ-lactone (GDL).
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9.1.2 La gomme arabique

La gomme arabique est produite par l’exudation des tiges d’acacias. Elle est récol-

tée principalement en Afrique saharienne et notamment au Sénégal. Historiquement, la

gomme arabique est certainement la plus ancienne et la plus connue de toutes les gommes.

Les Egyptiens l’utilisaient dès la troisième dynastie (2650 av J.C) pour assurer la cohésion

des bandages lors de la momification. Cette gomme servait aussi à la fixation des pigments

des encres utilisées par les scriptes.

La gomme arabique est un polysaccharide acide (chargé positivement) fortement ra-

mifié qui se présente sous la forme de mélanges de sels de potassium, de magnésium et

de calcium. On trouve la gomme arabique dans le commerce sous forme de poudre ou de

cristaux non moulus de couleur jaune blanche à jaune brunâtre. Même à des concentra-

tions de 30 à 40%, une solution de gomme arabique reste très peu visqueuse. Elle sert

principalement d’émulsifiant, spécialement pour les huiles d’agrumes, de colloı̈de protec-

teur dans les émulsions et de supports pour les arômes. La gomme arabique n’a cependant

qu’une importance secondaire dans l’industrie des denrées alimentaires. Son nom de code

alimentaire est E414. Elle est également bien connue pour le collage des étiquettes, des

enveloppes ou des timbres, mais aussi dans le domaine des peintures.

On admet que la gomme arabique, nommée gomme totale, est composée d’au moins

trois fractions de polysaccharides de structures différentes. La séparation des fractions est

réalisée par chromatographie. Les analyses biochimiques des fractions isolées ont confirmé

la présence d’un arabinogalactane-peptide (Fraction 1), d’une arabinogalactane-protéine

(Fraction 2), et d’une fraction de la glycoprotéine (Fraction 3) (Renard et al., 2006). La

gomme totale est principalement composée de la Fraction 1 à 89, 8% et de la Fraction 2

à 8, 8%. Les fractions ont des poids moléculaires, des enthalpies de réaction et des rayons

de giration très différents (Tab.9.1).

Masse moléculaire Enthalpie de réaction Rayon de giration

g.mol−1 kJ/kg nm

Gomme Totale 470 000 −470

Fraction 1 290 000 −340 6 nm

Fraction 2 1 860 000 −1120 30 nm

Tab. 9.1 Caractéristiques de la gomme arabique totale et de ces deux fractions principales
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9.1.3 La β−lactoglobuline

Les protéines généralement utilisées dans une réaction de coacervation sont des pro-

téines du lait. Elles sont issues du petit lait obtenu à partir de la fabrication du fromage.

La principale protéine est la β−lactoglobuline. Cette protéine globulaire présente une

structure tridimensionnelle parfaitement caractérisée délimitant en son sein une poche

hydrophobe (chargée négativement) susceptible de fixer de nombreux ligands apolaires

(De-Kruif et al., 2004).

9.1.4 Le Glucono-δ-lactone

L’acidification des échantillons est réalisée par l’ajout de Glucono-δ-lactone abrégé par

GDL (E575). La GDL est un ester de l’acide gluconique obtenu à partir du D-glucose par

fermentation oxydative (Acetobacter suboxydans). En milieu aqueux, le GDL s’hydrolyse

lentement en acide gluconique. Il provoque une acidification in situ et lente par relargage

de protons.

9.1.5 Systèmes concentrés

Cette étude est intégrée dans le projet rhéologie-interfaces en milieux dispersés de la

fédération de recherche Jacques Villermaux (FR.2863) à travers une collaboration avec

Christian Sanchez et Suzanna Akil du Laboratoire de Science et Génie Alimentaires de

Nancy. D’importantes études ont été réalisées par l’équipe de Christian Sanchez pour ca-

ractériser finement le mécanisme de coacervation en milieu dilué. Les études (Mekhloufi

et al., 2005) (Renard et al., 2006) utilisent une concentration de 0, 1% de polysaccharide-

protéine dans de l’eau avec un ratio polysaccharide-protéine de 2 : 1. De très nombreuses

techniques ont été confrontées pour décrire les différentes transitions structurales lors de

l’acidification. Nous pouvons notamment citer les techniques de DLS, de SLS, de me-

sures électrocinétiques, de dichröısme circulaire de RTA-IRTF et de microscopie optique

et électronique. Ces techniques fonctionnent uniquement dans des milieux peu concentrés,

transparents ou faiblement turbide mais présentent d’importantes difficultés lorsque le mi-

lieu est très turbide. Souhaitant élargir le champ d’étude du mécanisme de coacervation

en milieu plus concentré, nous avons proposé d’utiliser notre dispositif de diffusion de la

lumière. Le principe de la réaction de coacervation est illustré par la Fig.9.2 avec l’obten-

tion d’une phase très turbide.

Nous avons suivit le mécanisme de coacervation pour une concentration de 4% de

polysaccharide-protéine avec un ratio polysaccharide-protéine de 2 : 1. Ce système utilise

toutes les capacités du dispositif. Nous ne connaissons ni la concentration ni la taille des
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Fig. 9.2 Principe de la réaction de coacervation en milieu concentré (4%) entre la

β−lactoglobuline et la gomme d’acacia

objets formés lors de ce mécanisme d’auto-assemblage. Nous réaliserons néanmoins l’hy-

pothèse que l’indice optique de réfraction des objets est constant est vaut environs 1, 6

soit un paramètre optique m ≈ 1, 2. Nous utiliserons le rhéomètre instrumenté par un

petit vanne pour induire une recirculation dans l’échantillon. Ceci permet d’homogénéiser

correctement l’échantilon et de rendre l’acquisition de la matrice de Mueller moins bruitée.

9.2 Suivi du mécanisme de coacervation

L’expérimentation est réalisée sur un échantillon de 20 ml introduit dans un cylindre

de 4 cm de diamètre fixé sur la plaque de verre du dispositif. L’agitation est induite par

un dispositif à 6 ailettes de 22 mm de diamètre positionné à 5 mm du fond et mis en

rotation à une vitesse de 200 tours/min. A l’instant t = 0, nous ajoutons 3 g de GDL

pour débuter l’acidification. Le pH décrôıt rapidement au début puis stagne (Fig.9.4.b).

Le temps d’une expérimentation est d’environs 45 min. Nous réalisons l’acquisition de

matrices de Mueller (moyennées sur 10 images) à chaque intervalle de temps de 30 s.

Une mesure simultanée du pH est effectuée avec un pH-mètre électronique. L’exploitation

des images de diffusion est valide sur l’intervalle 4, 8 < pH < 3, 8 correspondant à une

turbidité suffisante (lTR < 5mm, Fig.9.4.a) du système. Nous présentons dans cette section

les résultats obtenus avec l’utilisation de la gomme totale d’acacia.

9.2.1 Transport scalaire de lumière

L’analyse des matrices de Mueller débute par la mesure de la longueur de transport lTR

par l’ajustement du modèle de Haskell Eq.4.7 sur l’élément M11 (Fig.9.3.b). La Fig.9.3.a

correspond à une matrice de Mueller acquise à t = 30 min (pH = 4.05). Nous utilisons un
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ajustement automatique développé sous Matlab pour analyser les 90 matrices de Mueller.

Fig. 9.3 a) Matrice de Mueller obtenue avec de la gomme totale d’acacia en milieu concentré

(4%) à t = 50 min (pH critique pH = 4, 05). b) Ajustement de la décroissance radiale

d’intensité avec le modèle de Haskell Eq.4.7 lTR = 1, 3 mm

Nous distinguons deux zones dans la variation de la longueur de transport en fonc-

tion du pH, Fig.9.4. Nous trouvons une première zone d’accroissement de la turbidité

4, 8 > pH > 4, 05 correspondant à une diminution de la longueur de transport lTR puis

une seconde zone de diminution de la turbidité 4, 05 > pH > 3, 8 correspondant à une

augmentation de lTR. Nous retenons un pH critique de 4, 05 associé à une valeur minimale

de la longueur de transport égale à 1, 3 mm. La variation non-monotone de la longueur
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de transport correspond semble-t-il à une modification simultanée de la taille des objets

diffusants et de leur concentration. De façon générale, une diminution de la longueur de

transport peut-être due à une augmentation de la fraction volumique et ou à une di-

minution de la taille des objets diffusants. Inversement une augmentation de lTR peut

correspondre à une diminution de la fraction volumique et/ou à un accroissement de la

taille des particules.

Fig. 9.4 a) Évolution de la longueur de transport lors du mécanisme de coacervation de la

gomme totale d’acacia. b) Le graphique intérieur donne l’évolution du pH en fonction

du temps.

Il est couramment supposé que la complexation macromoléculaire est un mécanisme

de nucléation-croissance. Ceci impliquerait, à fraction volumique ϕv constante, une aug-

mentation de la taille des objets. La longueur de transport devrait alors augmenter lorsque

le pH diminue. La variation non-monotone de la longueur de transport lTR ne valide pas

la supposition. La mesure de la longueur de transport lTR n’est donc pas suffisante pour

inverser le problème. Les images des éléments M11 de la Fig.9.3 prouvent l’impossibilité de

la caractérisation : les images à pH = 4, 72 et pH = 3, 95 sont identiques alors que leurs

états structurels sont vraisemblablement différents. Nous allons donc utiliser le transport

de polarisation pour mesurer la taille des objets indépendamment de la fraction volumique

ϕv .
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Chapitre 9. Application de la technique à la coacervation complexe

9.2.2 Évolution de la taille

La mesure de taille est obtenue à partir de l’amplitude des effets de polarisation linéaire

en ρ = lTR sur les éléments M12, M21, M13 et M31 (Fig.9.5.b). Nous effectuons l’inversion

en taille (Fig.9.5.a) avec les simulations de Monte Carlo correspondant à un paramètre

d’indice m = 1, 2. La mesure d’une amplitude de polarisation permet de déduire un rayon

moyenne (Fig.9.6).

Fig. 9.5 a) Résultats des simulations de Monte Carlo pour m = 1, 2 (idem Fig.7.7.a), la zone

grisée correspond au domaine d’inversion utilisé. b) Évolution de l’amplitude de pola-

risation M12 lors de la réaction de coacervation (Gomme totale).

Nous observons une taille moyenne quasi constante des complexes de 300 nm de rayon

jusqu’au pH critique puis nous assistons à une croissance rapide de leur taille jusqu’a

plusieurs micromètres (Fig.9.6).

Fig. 9.6 Taille obtenue par inversion de l’amplitude de polarisation (Fig.9.5.b) avec les simu-

lations de Monte Carlo m = 1, 2 (Fig.9.5.a)

Parallèlement à l’expérience du transport incohérent de lumière polarisée, des échan-
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9.2 Suivi du mécanisme de coacervation

tillons sont observés au microscope. La Fig.9.7 récapitule les différentes images. Les quatre

premières images (pH = 4, 75, pH = 4, 65, pH = 4, 21 et pH = 4, 11) confirment une pre-

mière phase où la taille des complexes semble constante et inférieure à 1 µm en diamètre.

Puis les quatre images suivantes (pH = 4, 03, pH = 4, 02, pH = 3, 98 et pH = 3, 88)

valident la deuxième phase avec une croissance rapide jusqu’à obtenir des complexes de

2 − 3 µm de rayon. Les quelques images microscopiques apportent donc une bonne cohé-

rence avec les mesures continues de transport de polarisation.

Fig. 9.7 Images de microscopie des complexes à différents pH lors de la réaction de coacerva-

tion (Gomme totale)
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Chapitre 9. Application de la technique à la coacervation complexe

9.2.3 Évolution de la fraction volumique

Nous avons fait l’hypothèse que les propriétés optiques sont connues puis nous avons

mesuré la taille des complexes avec les effets de polarisation. La seule inconnue restante est

par conséquent la fraction volumique que nous pouvons déterminer en utilisant l’inversion

de Mie sur la longueur de transport lTR. Pour chaque acquisition de la matrice de Mueller,

nous calculons la fraction volumique ϕv Fig.9.8 avec l’Eq.9.1 (idem Eq.8.2). Cscat et g sont

calculés par la théorie de Mie pour m = 1, 2 et a donnée par la Fig.9.5.b. lTR est donné

par la Fig.9.4.a.

ϕv ,c =
4
3πa

3

lTRCscat (a,m) (1 − g (a,m))
(9.1)

Fig. 9.8 Évolution de la fraction volumique lors de la réaction de coacervation (Gomme totale).

L’évolution de la concentration volumique en fonction du pH montre un maximum

au pH critique de 4, 05. Les deux phases de croissance et de décroissance sont également

visible sur les images de microscopie Fig.9.7. En effet sur les quatre premières images,

la concentration semble bien augmenter. Puis sur les images suivantes, la concentration

semble diminuer. Si la concentration était constante, la dernière image à pH = 3, 88 ne

serait qu’un zoom des images précédentes.

La première partie du mécanisme de coacervation montre un accroissement du nombre

d’objets de taille constante. Les hétérogénéités de concentration semblent se densifier brus-

quement les uns après les autres jusqu’au pH critique. Dans la seconde phase, la concentra-

tion des complexes décrôıt et leur taille augmente. Nous avons donc un second mécanisme

de croissance et, simultanément, de dissociation. Les complexes sont redispersés, peut-être

par répulsion en raison de l’hydratation des ions.
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9.3 Influence de la masse moléculaire de la gomme d’Acacia

A une valeur de pH proche de 3, il a par ailleurs été observé que tous les complexes

sont redispersés et la solution redevient transparente.

9.3 Influence de la masse moléculaire de la gomme d’Acacia

Nous avons réalisé deux autres expérimentations pour les deux fractions composant

la gomme totale avec une concentration identique de 4%. Puis nous avons effectué une

analyse identique à la méthode décrite précédemment. Les résultats des deux fractions

issues de la gomme totale sont récapitulés dans la Fig.9.9. Les deux graphiques donnant

l’évolution de la taille des complexes (Fig.9.9.a) et de leur concentration (Fig.9.9.b) sont

cohérents en ce sens que les courbes de la gomme totale sont bien intercalées entre les

courbes de ces fractions.

Fig. 9.9 Suivis de la taille (a) et de la concentration (b) des complexes pour la gomme arabique

et ces différentes fractions.

Un premier résultat étonnant est que la taille des complexes est inversement dépen-

dante de la masse moléculaire. Ceci à également été observé en DLS sur des solutions

diluées à 0, 1%. Par ailleurs, nous mesurons une fraction volumique ϕv croissante avec

l’enthalpie : plus la réactivité est importante plus le pourcentage de protéine ayant réagit

avec le polysaccharide augmente. La dernière observation porte sur la fluctuation du pH

critique en fonction de la fraction (Fraction1 pH = 4, 3, gomme totale pH = 4, 05). Il

semble que ce pH critique soit croissant avec la masse moléculaire.
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Chapitre 9. Application de la technique à la coacervation complexe

9.4 Conclusion

Le transport stationnaire incohérent de lumière polarisée a permis une mesure continue

et simultanée de la taille des complexes et de leur concentration lors de la réaction de coa-

cervation entre la gomme arabique d’acacia et la β−lactoglobuline. Nous avons distingué

deux phases dans la réaction de coacervation contrôlée en pH :

– Une première phase de création de complexe à taille quasi constante jusqu’a un pH

critique.

– Une seconde phase de croissance-dissociation correspondant à une augmentation ra-

pide de la taille des complexes et d’une diminution de leur concentration.

L’étude des différentes fractions de la gomme d’acacia a montré que la taille des com-

plexes est d’autant plus petite que la masse moléculaire du polysaccharide est élevée.

La technique est d’un grand intérêt pour étudier des phénomènes aussi complexes que

la coacervation. Elle permet un suivi dynamique de suspensions présentant une modifica-

tion simultanée de la taille des objets et de leur concentration. La taille moyenne mesurée

dépend de la longueur de transport et des effets de polarisation. Alors que la détermination

de la fraction volumique est liée à la longueur de transport ainsi qu’à la taille déduite.

Ce chapitre termine la seconde partie de ce mémoire sur l’utilisation du transport sta-

tionnaire incohérent de lumière polarisée pour la caractérisation de dispersions concentrées

isotropes.
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Conclusion Partie 2

Le transport incohérent stationnaire de lumière polarisée est une technique de ca-

ractérisation des suspensions concentrées. Ces milieux opaques et aléatoires diffusent de

manière très efficace la lumière visible. Ils sont définis par une taille de particule (ou une

distribution granulomètrique), une concentration en particules et des indices optiques de

particules et de la phase continue. Le transport isotrope de lumière non-polarisée considéré

comme une grandeur scalaire (énergie) permet de déterminer une longueur caractéristique

de diffusion. Cette longueur nommée la longueur de transport lTR est reliée par la théorie

de Mie aux trois propriétés physiques de la suspension que sont le paramètre de taille x le

paramètre optique m et la fraction volumique en objets ϕv. Si la distance interparticulaire

est de l’ordre de la longueur d’onde, il est possible de modéliser l’interaction entre les parti-

cules par la correction de Percus Yevick (pour des fractions volumiques inférieures à 60%).

La résolution théorique des équations du transfert radiatif en approximation de diffusion

permet de modéliser la décroissance radiale d’intensité rétrodiffusée d’une tache obtenue

par focalisation d’un faisceau laser à la surface d’un échantillon. Le modèle de Haskell ne

fait apparâıtre qu’un unique paramètre, la longueur de transport lTR. La détermination de

ce paramètre donne une première information sur la dispersion étudiée. Il est notamment

possible de déterminer une taille moyenne de particule connaissant la fraction volumique
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et les propriétés optiques (Mougel, 2006).

La propagation de la lumière ne se limite pas à un transport d’énergie, elle est éga-

lement définie par son état de polarisation. Désireux de caractériser plus précisément les

suspensions, nous avons développé un dispositif expérimental de diffusion multiple de la

lumière avec des contrôles de polarisation. Le dispositif permet l’acquisition de la matrice

de Mueller rétrodiffusée par une sélection électrique et rapide des états de polarisation

à l’entrée du faisceau laser incident dans l’échantillon et en sortie sur l’acquisition de la

tache rétrodiffusée. Les interactions entre la lumière et le système diffusant sont collectées

dans une matrice d’images 4 × 4. Le premier élément isotrope de la matrice, l’élément

M11 représente le transport scalaire de lumière non-polarisée déjà étudié précédemment.

Les autres éléments représentent la propagation des effets de polarisation. Cette matrice

montre une importante diversité des lobes de polarisation qui sont porteurs d’informations

supplémentaires.

Pour analyser la matrice de Mueller rétrodiffusée par une suspension, nous avons dé-

veloppé un modèle analytique basé sur deux événements de dispersion. La modélisation

d’un événement se base sur la théorie de Mie ainsi que sur les propriétés de rotation

des vecteurs de Stokes porteurs de l’information sur l’état de polarisation. Ce calcul à

deux événements apporte une bonne cohérence qualitative avec les matrices de Mueller

expérimentales. Nous avons pu regrouper les éléments identiques par rotation. Ce modèle

analytique ne rend pas compte des amplitudes des effets de polarisation obtenus expéri-

mentalement. Pour résoudre théoriquement le transport stationnaire incohérent de lumière

polarisée, nous avons alors développé des simulations numériques basées sur le principe des

simulations de Monte Carlo. Les simulations sont normalisées par la longueur de transport

lTR. Cette adimentionnement permet pour une diffusion non-dépendante de rendre la mo-

délisation indépendante de la fraction volumique. Nous avons ainsi pu construire une base

de donnée sur le paramètre de taille x et le paramètre optique m. L’analyse des résultats

à montré qu’une unique information sur les deux paramètres x et m semble présente dans

toute la matrice de Mueller. L’information est obtenue avec une sensibilité optimale par

l’amplitude de polarisation des éléments M12, M21, M13 et M31 et par la valeur moyenne

de polarisation des éléments M22 et M33. En confrontant les données expérimentales avec

la table de données des simulations de Monte Carlo, nous pouvons connaissant un para-

mètre (x ou m) déterminer le second et ceci indépendamment de la concentration. Nous

pouvons notamment connaissant les propriétés optiques déterminer une taille moyenne des

particules par une mesure de la longueur de transport et des effets de polarisation. Ensuite

par inversion de la théorie de Mie sur la longueur de transport nous pouvons déterminer
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la fraction volumique en particules. Les effets de polarisation disparaissent pour des par-

ticules typiquement supérieures à quelques micromètres. La gamme de validité est donc

limitée à des particules de taille comprise entre 50 nm et 5 µm.

Avec différentes émulsions d’huile dans de l’eau, nous avons validé le potentiel de la

technique et du dispositif. Nous avons correctement déterminé à la fois la taille moyenne

des gouttes d’huile et leur concentration. La technique est adaptée pour étudier des sys-

tèmes extrêmement complexes en évolution. Le mécanisme de coacervation complexe entre

la gomme arabique d’acacia et la β−lactoglobuline est bon exemple d’application. Ce sys-

tème très turbide en évolution rapide présente à fois des modifications simultanées de

fraction volumique et de taille de complexe. Deux phases de mûrissement on été observées

pendant l’abaissement du pH de la solution : une phase de création à taille constante puis

une phase de croissance-dissociation des complexes.

La technique, utilisable sur des solutions statiques ou sous écoulement, quelle que soit la

température est totalement non intrusive et nécessite un investissement financier restreint

(quelques dizaines de ke). La matrice de Mueller est autosuffisante pour caractériser les

milieux opaques aléatoires. La gamme d’utilisation de la technique s’étend pour des rayons

de particule compris entre la dizaine de nanomètres à quelques micromètres dans des sys-

tèmes de concentration comprise entre 0, 1% et la fraction maximale. Le dispositif optique

doté d’une acquisition rapide des matrices de Mueller (1 secondes) est positionné sous

un rhéomètre. Ceci permettra d’étudier l’évolution de système dynamique et de réaliser

un lien entre les propriétés physiques microscopiques d’un système et son comportement

macroscopique (rhéologie). Quelques restrictions théorique (diffusion dépendante) et ex-

périmentale (taille du faisceau laser) sont néanmoins présentes.

La troisième partie de ce mémoire développera la capacité du dispositif à étudier des

suspensions anisotropes présentant une orientation collective globale.
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Partie III

Transport de lumière en milieux

anisotropes en écoulement

Dans la précédente partie, nous avons utilisé le transport de lumière polarisée pour ca-

ractériser simultanément la taille et la fraction volumique d’une dispersion. Les dispersions

étaient considérées comme des milieux isotropes sans direction privilégiée. Dans cette der-

nière partie nous réaliserons l’étude de suspensions anisotropes. L’inventaire réalisé dans

la première partie a montré que seul la dispersion aux petits angles de rayons X et de

neutrons ou le cône cohérent de lumière pouvaient apporter une solution à la caractérisa-

tion des milieux anisotropes. Nous verrons que le transport incohérent de lumière est une

solution très pertinente pour étudier l’anisotropie de la structure microscopique.

L’anisotropie d’une suspension peut-être introduite soit par la phase continue soit par

les éléments dispersés. L’anisotropie d’une phase continue est vue comme une activité

optique qui modifie la polarisation d’une onde le long de son trajet. Un milieu biréfrin-

gent est un milieu anisotrope qui possède un axe rapide et un axe lent de propagation de

la lumière. La seconde source d’anisotropie est constituée par des objets non-sphériques

ou déformables avec une direction d’orientation privilégiée. Une première application sur

l’anisotropie fut introduite par l’observation d’une orientation privilégiée dans des adou-

cissants industriels en écoulement (Baravian et al., 2004).

171



Les expérimentations apportées dans cette partie seront toutes associées à de la mé-

canique des fluides complexes. L’anisotropie des milieux sera induite par un écoulement

cisaillé contrôlé par le rhéomètre.

Cette partie sera découpée en trois chapitres. Le premier chapitre apportera une me-

sure originale de la biréfringence dans les milieux opaques. Pour ce faire, nous réaliserons

une étude théorique par des simulations de Monte Carlo de la modification du transport de

polarisation par la phase continue. Des mesures expérimentales de la biréfringence d’une

solution de polymère de xanthane sous écoulement seront réalisées et validées. Les deux

chapitres suivants apporteront des mesures expérimentales de l’anisotropie induite par la

présence d’objets anisotropes présentant une orientation globale. Sur une solution d’ar-

gile, nous réaliserons une confrontation entre la technique de SAXS et notre technique de

transport incohérent de lumière. Ensuite nous appliquerons la technique à des suspensions

de bâtonnets de verre micrométriques de faible anisotropie. Le mémoire sera conclu par

une dernière application sur l’étude de l’agrégation et de la déformation de globules rouges.
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Chapitre 10

Biréfringence d’écoulement en

milieu turbide

Le transport incohérent de lumière polarisée est un bon moyen d’investiguer les mi-

lieux diffusants. Nous avons vu que par comparaison à des simulations de Monte Carlo nous

pouvions mesurer une taille moyenne et une concentration volumique d’objets dispersés

par analyse du transport des effets de polarisation. Si la phase continue est optiquement

active, elle peut modifier le transport de polarisation. Dans le cas d’une phase continue

biréfringente, cette phase comporte des indices de réfraction différents suivant la direction

de propagation dans le milieu. La biréfringence uniaxe se traduit par un axe plus lent de

propagation de la lumière. L’article de (Wang et Wang, 2002) montre sur des simulations

de Monte Carlo que la biréfringence se traduit par des modifications de plusieurs éléments

de la matrice de Mueller.

Dans ce chapitre nous introduisons une méthode pour mesurer la biréfringence de phase

continue d’un milieu turbide. La première section de ce chapitre introduira les modifica-

tions apportées aux simulations de Monte Carlo pour prendre en compte la biréfringence

de la phase continue puis nous étudierons les résultats de diverses simulations. Ensuite

nous étudierons une solution biréfringente de xanthane sur laquelle nous effectuerons des

mesures de Biréfringence. La solution de xanthane sera ensemencée avec une émulsion

(Émulsion2) et nous réaliserons de nouvelles mesures de biréfringence en milieu turbide

par confrontation du transport anisotrope de lumière polarisée avec les simulations numé-

riques. Ce chapitre fait également l’objet d’une publication soumise à la revue Phy. Rev.

E (Baravian et al., 2006).
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Chapitre 10. Biréfringence d’écoulement en milieu turbide

10.1 Simulations de Monte Carlo avec biréfringence

10.1.1 description

Nous utilisons les simulations de Monte Carlo développées dans le Chapitre.7. La bi-

réfringence se traduit uniquement par une modification du vecteur de Stokes le long du

chemin entre deux événements successifs de dispersion. Cette modification dépend à la

fois de la distance d parcourue, de la direction de propagation α par rapport à l’axe lent

de biréfringence et des indices optiques de la phase continue (suivant l’axe rapide de bi-

réfringence ns et suivant l’axe lent nf ). La grandeur ∆ de l’Eq.10.1 correspond au retard

introduit lors de la propagation entre deux événements successifs de dispersion.

∆ = 2π∆nd
Nm

λ
avec ∆n =

nfns
√

(ns cosα)2 + (nf sinα)2
− nf (10.1)

Un événement de dispersion est caractérisé par une modification du vecteur de Stokes

incident avec l’interaction de la particule donnée par le produit matriciel M (θ)R (φ).

Ensuite le vecteur de Stokes est modifié lors de la propagation dans le milieu biréfringent

avec la matrice T (β,∆) (Eq.5.4, Eq.10.2) où β correspond à l’angle azimutal entre l’axe

lent de biréfringence et la direction de propagation. L’événement est donné par l’Eq.10.3.

T (β,∆) =















1 0 0 0

0 T22 T23 T24

0 T32 T33 T34

0 T42 T43 T44















avec

T22 = cos (4β) sin2 (∆/2) + cos2 (∆/2) T24 = −T42 = − sin (2β) sin (∆)

T33 = − cos (4β) sin2 (∆/2) + cos2 (∆/2) T34 = −T43 = cos (2β) sin (∆)

T23 = T32 = sin (4β) sin2 (∆/2) T44 = cos (∆)

(10.2)

Si = T (βi,∆i)M (θi)R (φi)Si−1 (10.3)

Il est à noter que la matrice de biréfringence T (β,∆) se transforme en une matrice

identité quand la biréfringence est nulle δ = 0. On retrouve ainsi l’Eq.6.6 d’un événement

de dispersion sans biréfringence.

Le parcours d’un photon se décompose en une propagation verticale sur une distance

d0 puis n événements de dispersion. Les conditions de sortie restent identiques aux simu-

lations précédentes. Il faut faire attention à prendre en compte les retards de biréfringence

induit lors de l’entrée du photon sur la distance d0 et lors de la sortie entre le dernier

événement de dispersion et le plan de sortie.
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10.1 Simulations de Monte Carlo avec biréfringence

10.1.2 Analyse

10.1.2.1 Axe de biréfringence

Afin d’observer les effets de la biréfringence, nous avons réalisé quelques simulations

dans le domaine de Rayleigh (a = 10 nm Np = 1, 4564 et Nm = 1, 33) pour une biré-

fringence δ = 1, 62.10−8 soit ∆ = 0, 1 en modifiant l’orientation de l’axe de biréfringence,

Fig.10.1. Cette orientation est repérée par un vecteur constitué de trois composantes x,

y et z dans le repère fixe du laboratoire. Les axes x et y sont respectivement horizontal

et vertical dans le plan d’observation des images de la matrice rétrodiffusée. La représen-

tation des matrices de Mueller reste inchangée. Les images sont affichées dans l’échelle

logarithmique signée et chaque image à une taille de 10 lTR de coté.

La biréfringence provoque des modifications dans la matrice de Mueller rétrodiffusée

Fig.10.1. Nous remarquons notamment l’apparition d’un motif sur les éléments M14 et

M41. Ces derniers étaient parfaitement nuls dans le cas d’un milieu isotrope. Plus globa-

lement nous visualisons des modifications sur les éléments de la dernière ligne et de la

dernière colonne de la matrice de Mueller. Les autres éléments semblent rester identiques

en présence ou non d’une biréfringence de la phase continue.

La matrice de Mueller est porteuse d’une information sur la direction de la biréfrin-

gence. Cette information est présente dans les éléments M14 et M41. L’axe de biréfringence

de la phase continue est orienté à 45◦ par rapport à l’axe positif de l’élémentM41 (Fig.10.1).

Il est à noter qu’une biréfringence suivant l’axe z (axe du faisceau incident, axe per-

pendiculaire au plan d’observation) ne provoque aucune modification des éléments. Cette

propriété s’explique par la compensation du déphasage induit lors de la propagation du

photon dans la direction z. Un photon rétrodiffusé pénètre dans le milieu à une profondeur

donnée (sens z > 0) puis quitte le milieu en parcourant la même profondeur (sens z < 0).
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Chapitre 10. Biréfringence d’écoulement en milieu turbide

Fig. 10.1 Simulations de Monte Carlo en Rayleigh a = 10 nm Np = 1, 4564 et Nm = 1, 33

pour différentes orientations de la biréfringence (δ = 1, 62.10−8) notées sous la forme

(xyz)

10.1.2.2 Amplitude de biréfringence

Si nous examinons les Eq.10.1 et Eq.10.2, nous voyons clairement que le déphasage ∆

est le paramètre de biréfringence contrôlant le transport incohérent de lumière polarisée. ∆

et ∆n sont maximum pour une propagation perpendiculaire au plan contenant l’axe rapide

et l’axe lent de biréfringence (α = π/2, ∆n,max = ns − nf ). Le déphasage moyen induit

le long de cet axe sur une distance lTR est donné par 〈∆(lTR)〉 calculé suivant l’Eq.10.4.

Il dépend à la fois de l’amplitude de biréfringence δ et de la distance lTR parcourue. Nous

rappelons que cette distance est fonction du paramètre de taille, du paramètre optique et
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10.1 Simulations de Monte Carlo avec biréfringence

de la concentration. La Fig.10.2 présente des matrices de Mueller issues de simulations de

Monte Carlo en approximation de Rayleigh (a = 10 nm Np = 1, 4564 et Nm = 1, 33)

avec un axe de biréfringence suivant l’axe x pour quatre valeurs différentes de 〈∆(lTR)〉.

Fig. 10.2 Simulations de Monte Carlo en approximation de Rayleigh a = 10 nm Np = 1, 4564

et Nm = 1, 33 pour différentes amplitude de biréfringence a) 〈∆ (lTR)〉 = 0, b)

〈∆ (lTR)〉 = 0, 1, c) 〈∆ (lTR)〉 = 0, 5 et d) 〈∆ (lTR)〉 = 3

Nous observons que les lobes des images rétrodiffusées pour les éléments M41 et M14

augmentent quand < ∆ > augmente entre 0 et 1 (Fig.10.2.a et Fig.10.2.b). Hormis l’élé-

ment M44, les éléments de la dernière ligne sont antisymétriques avec les éléments de la

dernière colonne. Pour des valeurs plus élevées de la biréfringence 〈∆(lTR)〉 ≥ 1, nous in-

troduisons des déphasages sur le chemin entre deux événements de dispersion pouvant être

supérieurs à 2π (Fig.10.2.c). Le déphasage introduit devient aléatoire entre deux événe-

ments successifs de dispersion et les effets de polarisations sont alors atténués (Fig.10.2.d).

Nous avons une perte de similitude par rotation entre les éléments M12 ou M21 et les

éléments M13 ou M31. Cet effet est plus particulièrement observé sur la Fig.10.3

〈∆(lTR)〉 = 2πδlTRNm/λ (10.4)
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Fig. 10.3 a) Amplitude relative de l’élément M21 en fonction 〈∆ (lTR)〉. b) Rapport d’amplitude

de l’élément M31 avec l’élément M21 en fonction de 〈∆ (lTR)〉

Dans la partie précédente de ce mémoire nous avons montré que l’amplitude des élé-

ments M21, M12, M31 et M13 était identique par rotation et dépendante de la taille des
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particules ainsi que des propriétés optiques. Nous observons ici que l’amplitude des élé-

ments dépend aussi de l’amplitude de la biréfringence. Le graphique Fig.10.3.a traduit

la modification de l’amplitude de l’élément M21 (ou M12) en fonction de la biréfringence

quand 〈∆(lTR)〉 ≥ 1.

Par ailleurs la biréfringence apporte une perte de symétrie entre l’élément M12 (ou

M21) et l’élément M13 (ou M31) pour des valeurs de déphasage moyen 〈∆(lTR)〉 ≥ 0, 5. La

Fig.10.3.b représente le ratio entre l’amplitude de l’élément M31 (ou M13) et l’élément M21

(ou M12). En absence de biréfringence, la symétrie par rotation se traduit par un ratio ini-

tial de 1. Dans le domaine 〈∆(lTR)〉 ≤ 0, 5 nous conservons un ratio unitaire caractérisant

des transports de polarisation parfaitement constants. Pour des valeurs supérieures nous

visualisons une décroissance du ratio M31/M21. Sur une matrice de Mueller expérimentale,

une comparaison entre les amplitudes de l’élément M31 (ou M13) et de l’élément M21 (ou

M12) permettra de cibler le domaine d’étude.

Nous allons dorénavant nous intéresser à l’élément M41 qui est porteur des informa-

tions recherchées (amplitude et orientation) de la biréfringence de la phase continue. Nous

effectuons alors des simulations de manière à analyser l’influence de l’amplitude du dépha-

sage moyen 〈∆(lTR)〉 de 1.10−3 à 100 sur les éléments M14 (ou M41). Les simulations sont

réalisées à rapport d’indice m = 1, 1 constant caractéristique des émulsions d’huile dans

de l’eau. Nous choisissons cinq tailles différentes pour balayer les valeurs du paramètre

d’anisotropie optique g : 10 nm g = 0, 0025, 75 nm g = 0, 1525, 120 nm g = 0, 4202,

230 nm g = 0, 7862 et 500 nm g = 0, 9369. Les simulations sont effectuées pour une frac-

tion volumique de 1%, une série supplémentaire est réalisée pour une fraction volumique

de 5% pour la taille de 10 nm. La figure Fig.10.4 récapitule l’ensemble des ratios d’ampli-

tudes mesurés sur des couronnes de rayon lTR ± lTR/10. Nous observons que le ratio est

totalement indépendant de la fraction volumique en particule. Les points des séries 10 nm

pour φv = 1% et 5% sont parfaitement superposés. Dans la région 〈∆(lTR)〉 ≤ 0, 5, le

ratio d’amplitude est parfaitement linéaire avec 〈∆(lTR)〉. La relation directe Eq.10.5 rend

possible la mesure de biréfringence dans les milieux turbides dans le domaine de déphasage

moyen 〈∆(lTR)〉 ≤ 0, 5.

〈∆(lTR)〉 = 1, 45M41 (lTR) /M21 (lTR) (10.5)

Nous avons choisi de mesurer les amplitudes de polarisation en lTR mais puisque nous

utilisons uniquement des ratios d’amplitude, nous aurions pu mesurer ces amplitude à une

autre position radiale (exemple lTR/2).
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Fig. 10.4 Ratio entre l’amplitude de l’élément M41 et l’élément M21 en fonction du déphasage

moyen 〈∆ (lTR)〉 pour différentes tailles de particule et fractions volumiques. La ligne

continue (Modèle) représente l’Eq.10.5

10.2 Biréfringence de la solution de xanthane

Nous testons à présent la possibilité de déterminer la birefringence d’un milieu turbide

en utilisant le résultat de la Fig.10.4 (Eq.10.5).

10.2.1 Préparation des échantillons

La gomme xanthane est un polysaccharide naturel, produit à partir de la bactérie

Xanthomonas campestris, trouvée dans le sucre et la mélasse. Ce polymère est commer-

cialisé essentiellement sous forme d’une poudre obtenue par précipitation du polysaccharide

contenu dans le moût de fermentation à l’aide d’un solvant organique polaire. Il est un

agent épaississant, stabilisateur et émulsifiant. Le xanthane trouve donc des applications

industrielles nombreuses et variées, grâce à ses propriétés rhéologiques exceptionnelles. Le

marché mondial est estimé à plus de 30 000 t/an. Le xanthane est utilisée pour la récupé-

ration du pétrole, dans la confection des ciments et mortiers pour le BTP, dans l’industrie

des cosmétiques, dans la formulation des peintures, etc. Mais c’est dans les industries

alimentaires que les propriétés rhéologiques du xanthane trouvent leurs principales appli-

cations.
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La solution de xanthane étudiée à été fournie par ”SKW Biosystems”. La poudre est

diluée à 10 g/l dans de l’eau distillée salée à 0, 1 g/mol de NaCl. La mise en solution est

réalisée à froid sous agitation magnétique avec un barreau magnétique. L’ajout du sel est

conseillé dans les articles (Yevlampieva et al., 1999) et (Camesano et Wilkinson, 2001) ; il

permet de détendre les châınes de xanthane et ainsi d’augmenter d’environs 20% sa biré-

fringence. La solution préparée est très concentrée par rapport aux solutions généralement

étudiées dans la littérature. Elle présente une biréfringence élevée d’environ δ = 5.10−5

sous écoulement.

Nous avons dopé la solution de xanthane avec des particules diffusantes. Nous avons

préparé six échantillons avec des concentrations massiques différentes (1 %, 1, 25 %, 1, 5 %,

1, 75 %, 2, 25 %, 3 %) de l’Emulsion2 (220 nm de rayon). Les solutions sont totalement

opaque a ces concentrations.

Dans un premier temps nous avons vérifié que la solution de xanthane ne présentait

pas de glissement de surface sous écoulement. Pour ce faire nous avons réalisé des mesures

de viscosité avec différentes géométries (Fig.10.5.a) dont une avait une surface rugueuse.

Cette analyse est importante car nous utiliserons ensuite différentes géométries de me-

sure (une cellule de cylindres coaxiaux et une géométrie plan plan). La Fig.10.5.a donne

une excellente reproductivité de la loi rhéologique (sur cinq décades de cisaillement) avec

les géométries plan-plan 2 mm (rhéomètre Physica MCR300), cône-plan 20 mm de dia-

mètre 0, 30◦ (rhéomètre TA AR2000) et cône-plan 60 mm de diamètre 1◦ (rhéomètre TA

AR2000). Nous avons aucun glissement sur les parois.

Nous pourrons par conséquent comparer nos résultats de mesures de biréfringence sur

la solution de xanthane seule réalisées avec une cellule de Couette avec nos mesures effec-

tuées sur les solutions dopées en géométrie plan-plan.

Les molécules de Xanthane sont des petits bâtonnets quasi rigides qui s’orientent fa-

cilement sous écoulement. Ceci induit un comportement extrêmement rhéofluidifiant à la

solution. Sa loi rhéologique est de type puissance η = 13γ̇−0,85 dans le domaine de cisaille-

ment
[

0, 01 s−1 ; 1 000 s−1
]

.

Nous avons ensuite vérifié que la rhéologie des solutions opaques n’était pas pertur-

bée par l’ajout des particules de l’émulsion. La superposition des courbes de la Fig.10.5.b

montre l’influence négligeable des particules à ces faibles concentrations.
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Fig. 10.5 a) Rhéologie de la solution de xanthane mesurée à l’aide de différentes géométries.

b) Rhéologie des solutions de xanthane dopées en particule à 1, 25%, 1, 75% et 3%.

La ligne continue est une loi puissance donnée par l’équation η = 13γ̇−0,85

Avant de positionner l’échantillon sous cisaillement nous effectuons une mesure préli-

minaire de diffusion de la lumière en milieu semi-infini (10 mm). Nous ajustons le modèle

de Haskel sur la décroissance radiale d’intensité de l’élément M11. Les valeurs obtenues

pour chacune des dilutions sont récapitulées dans la Fig.10.6. Nous avons observé que les

molécules de xanthane modifient légèrement l’indice de la phase continue à 1, 34.

Fig. 10.6 Longueur de transport des solutions de xanthane dopées avec l’émulsion. • Mesures

expérimentales de la longueur de transport. Ligne continue théorie de Mie Percus-

Yevick pour a = 220 nm, Np = 1, 4564 et Nm = 1, 34
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10.2.2 Mesure de la Biréfringence

En collaboration avec Jean-Paul Decruppe de l’Institut de Physique et Électronique

de Metz, nous avons mesuré la biréfringence de la solution de xanthane seule avec une

technique développée récemment (Decruppe et al., 2005). Un faisceau laser polarisé linéai-

rement est collimaté dans l’entrefer d’une cellule de deux cylindres coaxiaux transparents.

La cellule de Couette d’une hauteur de 73 mm est constituée d’un cylindre intérieur mo-

bile de 48 mm de diamètre et un cylindre extérieur fixe de 50 mm de diamètre. Nous

observons la propagation du faisceau laser dans l’entrefer avec une orientation à 45◦ par

rapport à l’axe de polarisation initiale du faisceau. Nous visualisons alors des modulations

d’intensité le long du faisceau, Fig.10.7. La distance entre deux noeuds correspond alors à

un déphasage de 2π.

Fig. 10.7 Biréfringence de la solution de xanthane seule pour différents cisaillements en repré-

sentation fausses couleurs

A partir des images, nous avons extrait l’intensité le long du faisceau. Nous avons

modélisé la décroissance d’intensité avec une composante de décroissance exponentielle et

une oscillation sinusöıdale : I (z) ∝ exp−z/ls [1 + C sin (2πz/d)]. Le modèle est ajusté avec

une méthode de moindre carré. La Fig.10.8 montre quelques exemples d’ajustement. La

décroissance exponentielle d’intensité correspond à la loi de Beer-lambert avec la mesure

d’une longueur de dispersion ls de 26, 3 mm de la solution de xanthane. La distance d entre

deux noeuds est convertie en une mesure de la biréfringence par l’expression δ = dNm/λ

(Decruppe et al., 2005). Nous noterons que la biréfringence n’est pas totalement nulle à

cisaillement nul. La mise en position de l’échantillon ainsi qu’un petit précisaillement sont

suffisants pour induire une biréfringence qui ne se relaxe pas du fait de la viscosité impor-
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tante de la solution. Nous observons que plus le cisaillement augmente plus la biréfringence

augmente, typiquement de 2.10−5 à 6.10−5 Fig.10.10.b.

Fig. 10.8 Décroissances et oscillations d’intensité de la solution de xanthane sous cisaillement

(1s−1, 10s−1, 100s−1 et 800s−1). Les lignes continues représentent les modèles ajustés

d’équation I (z) ∝ exp−z/ls [1 + C sin (2πz/d)]

10.3 Biréfringence en milieu turbide

Nous utilisons dans cette section la technique notre transport stationnaire incohérent

de lumière polarisée pour déterminer la biréfringence du milieu turbide. Nous travaillerons

sur les solutions de Xanthane ensemencées avec l’Émulsion 2 (220 nm).

L’analyse d’une matrice de Mueller est réalisée en deux temps. Tout d’abord, nous

déterminons la longueur de transport de l’échantillon en ajustant le modèle de Haskell sur

la décroissance radiale d’intensité de l’élément M11. Puis nous déterminons l’amplitude
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sinusöıdale sur les couronnes de rayon lTR ± lTR/10 des éléments M31, M13, M21 et M12.

Pour tous les échantillons testés nous obtenons un ratio M31 (lTR) /M21 (lTR) constant

avec une amplitude normalisée de l’élément M21 : M21 (lTR) .l2TR = 0, 085 ± 0, 004. Nous

sommes donc clairement dans le domaine 〈∆(lTR)〉 ≤ 0, 5. Le ratio M41 (lTR) /M21 (lTR)

est proportionnel à 〈∆(lTR)〉 suivant la relation de l’Eq.10.5.

Fig. 10.9 Variations radiales d’intensité normalisée de l’élément M14 à différents cisaillements

de la solution dopée avec 1, 5% de particule. Les points pleins correspondent à une si-

mulation de Monte Carlo pour des conditions semblables (φv = 1, 5% et a = 220 nm )

avec une biréfringence δ = 5.10−5 dans la direction de l’axe x. Les images supérieures

sont les images expérimentales des éléments M14 de la solution dopée à 1, 5% sous

cisaillement.

La figure Fig.10.9 apporte la représentation des variations radiales normalisées d’in-

tensité sur une période π de l’échantillon à 1, 5% de particules sous cisaillement. Nous

distinguons clairement que l’amplitude de l’élément M14 augmente avec le cisaillement.

Nous avons donc une augmentation de la biréfringence sous cisaillement correspondant

à l’orientation des macromolécules. Avec la comparaison des simulations de Monte Carlo

(axe lent de biréfringence dans la direction x), nous observons que l’axe lent de biréfrin-

gence est légèrement incliné de 12 ± 5◦ avec l’axe des vitesses.
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L’intensité normalisée de biréfringence change en fonction du cisaillement mais éga-

lement en fonction de la concentration en particules, Fig.10.10.a. Les longueurs lTR sont

en effet inversement proportionnelles à la concentration volumique en particule (diffusion

non dépendante). La modification est répercutée sur le déphase 〈∆(lTR)〉. En combinant

Eq.10.4 et Eq.10.5 on obtient l’expression final de l’amplitude de biréfringence δ, Eq.10.6.

δ = 1, 45M41 (lTR) /M21 (lTR)
λ

2πNm

1

lTR
(10.6)

Fig. 10.10 a) Ratios d’amplitude des éléments M14 et M12 des solutions dopées de Xanthane

sous cisaillement. b) Biréfringence sous écoulement des solutions dopées et de la

solution de Xanthane sans particule (symbole plein).

L’Eq.10.6 est utilisée pour construire la Fig.10.10.b à partir des points expérimentaux

de la Fig.10.10.a. Nous représentons également la biréfringence mesurée sur le xanthane

sans particules. Nous observons un bon accord entre les deux techniques de mesure. Le

transport de polarisation peut donc être utilisé pour mesurer la biréfringence d’une solution

opaque.

10.4 Conclusion

Dans ce chapitre nous avons étudié l’influence de la biréfringence de la phase continue

sur le transport de polarisation. Avec des simulation de Monte Carlo, nous avons montré

que la matrice de Mueller et plus particulièrement le rapport M41 (lTR) /M21 (lTR) est

proportionnel à l’amplitude de biréfringence δ tant que le déphasage induit entre deux

événements de dispersion est inférieur à 2π. La matrice de Mueller permet donc de mesurer
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une biréfringence dans un milieu opaque indépendamment de la concentration et de la taille

des particules présentes dans l’échantillon. La méthodologie de mesure est la suivante :

– Mesure de la longueur de transport lTR sur l’élément M11.

– Détermination des effets de polarisation (en lTR) sur les éléments M12 et M13.

– Si le ratio des effets de polarisation M12/M13 ≈ 1 alors 〈∆(lTR)〉 < 0, 5

– Détermination des effets de polarisation (en lTR) sur l’élément M14.

– Calcul de la biréfringence δ avec le ratio des effets de polarisation M14/M12 et

l’Eq.10.6.

La matrice de Mueller d’un milieu opaque permet de déterminer : la longueur de trans-

port lTR avec l’élément M11, la taille des objets diffusants avec les éléments M12 et M22,

la concentration en objets diffusants avec l’inversion de Mie sur lTR et la biréfringence du

milieu avec l’élément M14. La méthode est complète, in situ et autosuffisante.
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Chapitre 11

Anisotropie des objets

diffusants

Dans la Partie 2 de ce mémoire, nous avons utilisé le transport incohérent de lumière

polarisée pour déterminer la taille et la concentration des objets diffusants. Pour caractéri-

ser complètement les diffuseurs, il manque l’information sur leur forme et leur orientation

moyenne. Les suspensions suffisamment concentrées en particules anisotropes ou défor-

mables montrent en effet une orientation partielle ou globale lorsqu’elles sont soumises à

un champ de cisaillement externe. L’anisotropie macroscopique qui en résulte au niveau

de l’échantillon est une grandeur importante pour les propriétés mécaniques du matériau.

L’observation microscopique de ces suspensions concentrées est généralement très délicate

puisque ces milieux sont opaques à la lumière. Une observation par microscopie ne donne

donc qu’une information partielle de surface qui n’est pas forcément représentative de

l’orientation moyenne dans l’échantillon. La diffusion 2D aux petits angles de rayons X

(Small Angle X Scattering) est une technique pertinente pour déterminer cette orientation

moyenne mais cette technique est néanmoins difficile d’accès (ESRF - Grenoble). Notre

technique de transport anisotrope incohérent de lumière est une technique alternative de

caractérisation des suspensions anisotropes.

Ce chapitre présentera deux applications de la diffusion anisotrope. Une première ap-

plication portera sur une argile (la sépiolite) de taille moyenne inférieure à la longueur

d’onde. Puis une seconde application développera l’interaction de la lumière avec des ob-

jets micrométriques anisotropes de taille moyenne supérieure à la longueur d’onde.

Nous présentons le principe d’une mesure d’orientation moyenne sous écoulement sur
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la sépiolite. Nous réaliserons une confrontation des données de diffusion multiple de la lu-

mière avec des mesures de dispersion de rayon X aux petits angles (SAXS). Ensuite nous

appliquerons la technique à l’étude de l’orientation moyenne de suspensions de bâtonnets

de verre micrométriques de faible anisotropie en fonction du temps, du cisaillement et de

leur concentration.

11.1 Comparaison de la diffusion anisotrope avec des me-

sures de SAXS 2D

11.1.1 Préparation des échantillons

Nous allons réalisé la confrontation des deux techniques sur une suspension de fibres

naturelles d’argile : la sépiolite provenant de Vallescas en Espagne. Sa formule chimique de

l’argile est Si12Mg8O30(OH)4, 8(H2O). Sa structure cristalline est composée de couches

d’octaèdres discontinues. Leur densité est de 2, 103 kg.m−3. Des mesures de diffusion de

neutrons aux petits angles ainsi que des mesures de dispersion de lumière ont été effectuées

pour recueillir des informations sur la dimension des fibres (Pignon et al., 2003). Elles ont

une longueur voisine de 1 µm pour un diamètre moyen de 0, 01 µm soit une anisotropie

élevée, de 100. L’argile est dissoute dans une solution d’oxyde de poly-éthylène. Ce poly-

mère (PEO) à châıne linéaire de formule [−CH2 − CH2 −O]n, a un poids moléculaire de

1 105 g/mol. La solution de PEO est préparée à 4%. Le PEO est ajouté lentement dans

l’eau déminéralisée et salée (agitation avec un barreau magnétique pendant 12 heures).

Les forces ioniques sont ajustées par une concentration de NaCl de 10−3 mol/l. Le pH

de la solution de polymère est de 8, 5 à 25◦C. La poudre sèche de Sépiolite est ensuite

lentement ajoutée à la solution de PEO sous agitation magnétique pendant 15 min. Diffé-

rentes dilutions sont fabriquées à 0, 5%, 0, 75%, 1% et 1, 25% en volume. Les suspensions

d’argile et de PEO sont soniquées avec des ultrasons à une fréquence de 20 kHz à 350 W

pendant 10 minutes. Le pH des suspensions est ensuite ajusté à 10 à 25◦C par l’ajout

goutte-à-goutte de NaOH. Une sédimentation lente des fibres a été vue pendant plusieurs

jours au repos. Afin d’étudier les suspensions en phase homogène toutes les suspensions

étudiées sont préalablement soniquées une heure avant l’expérimentation.

Les suspensions de Sépiolite ont un comportement rhéofluidifiant important sous ci-

saillement. L’orientation progressive des châınes de polymères induisent une diminution

élevée de la dissipation visqueuse. La Fig.11.1 représente trois courbes de viscosité pour

trois géométries différentes de la suspension de Sépiolite à une concentration de 0, 5%.
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Fig. 11.1 Comportement rhéofluidifiant de la suspension de Sépiolite à différentes fractions

volumiques mesurée à l’aide de différentes géométries

11.1.2 Mesure de SAXS sur la sépiolite

Les mesures de SAXS ont été réalisées à l’ESRF sur le dispositif RHeo-SAXS de la

ligne ID2 (Narayanan et al., 2001) (Panine et al., 2003) par Frédéric Pignon du laboratoire

de Rhéologie de Grenoble en collaboration avec Theyencheri Narayanan et Pierre Panine

de l’ESRF. Les mesures de SAXS ont été réalisées à l’ESRF sur le dispositif Rheo-SAXS

de la ligne ID2 par Frédéric Pignon du laboratoire de Rhéologie de Grenoble. L’installation

est composée d’un rhéomètre à contrainte imposée Haake RS300 instrumenté d’une cellule

de type Couette transparente en polycarbonate. Les dimensions de la Cellule de couette

sont : un rayon interne de 21 mm, un rayon externe de 21, 5 mm et une hauteur de

62 mm. Le faisceau de rayon X traverse la cellule sans perte significative d’intensité. Les

expériences ont été réalisées à une température de 25◦C. L’organisation des particules

collöıdales peut être visualisée dans deux plans : un plan parallèle (position radiale) et un

plan perpendiculaire (Position tangentielle) à la direction du cisaillement (Fig.11.2). Toutes

les mesures ont été effectuées en utilisant un détecteur carré de dimension dCCD = 16, 8 cm

(2048 × 2048 pixels), une longueur d’onde de rayons X de λ = 0, 0995 nm et une distance

entre l’échantillon et le détecteur de D = 10 m. La position radiale ρ à partir du centre

de l’image peut être caractérisée soit par une distance en pixel (Nbpixel) ou en mètre avec

la relation ρ = NbpixeldCCD/2048 soit par le vecteur d’onde q = 4π sin (θ/2) /λ où θ est
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l’angle d’ouverture du capteur CCD donné par θ = ρ/D

Fig. 11.2 Schéma du dispositif rhéo-SAXS de l’ESRF

Différentes expériences ont été réalisées dans le but de définir l’orientation des fibres

de sépiolite dans la matrice newtonienne de polymère. L’échantillon après être positionné

dans la cellule est mis sous cisaillement de 1 s−1 à 1 000 s−1. La Fig.11.3 représente les

figures de dispersion en position radiale et en position tangentielle à 100 s−1. Les images

sont en représentation logarithmique et en fausses couleurs d’intensité. Ces images sont

obtenues pour une solution de sépiolite à 0, 5% en volume dans une solution polymère de

PEO à 4%. On observe une déformation verticale importante de la tache de dispersion

(anisotropie) en position radiale. Ceci correspond à un alignement horizontal des fibres de

sépiolite dans le plan de cisaillement. En observation tangentielle l’image reste circulaire,

il n’y a par conséquent pas orientation radiale notable. L’orientation des fibres se fait dans

l’axe des vitesses comme il est schématisé dans sur la Fig.11.2.

L’augmentation du taux de cisaillement s’accompagne par une accentuation de l’ani-

sotropie en position radiale. Les fibres de sépiolite s’alignent de plus en plus dans l’axe des

vitesses. Nous utiliserons le paramètre d’ordre P2 donné par l’Eq.2.2 et le paramètre A2

(Eq.2.3) pour quantifier l’anisotropie des images de SAXS.

L’analyse de la décroissance radiale d’intensité en vecteur d’onde I (q) donne des infor-
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11.1 Comparaison de la diffusion anisotrope avec des mesures de SAXS 2D

Fig. 11.3 Images en position radiale et position tangentielle de SAXS de la solution PEO 4%

et Sépiolite 0, 5% en volume à 100 s−1

mations sur la morphologie des objets. Une décroissance en q−1 est représentative d’une

dispersion sur des objets à une dimension comme des fibres. La décroissance en q−2 ca-

ractérise des objets à deux dimensions comme des disques. Dans le cas de la sépiolite

(Fig.11.4), la décroissance moyenne est de type q−3 correspondant à des objets à trois

dimensions. Cette décroissance reste identique, que l’image de dispersion soit isotrope (au

repos) ou anisotrope (sous cisaillement). Les objets observés ont donc en moyenne une

structure tridimensionnelle sphèrique au repos puis une structure ellipsoı̈dale sous cisaille-

ment.

Fig. 11.4 Variation radiale de l’intensité en SAXS sur la solution de sépiolite à 0, 5%
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11.1.3 Transport incohérent de lumière

Les expérimentations de transport incohérent de lumière réalisées sur les échantillons

de sépiolite de différentes concentrations ont été réalisées en géométrie plan-plan de 50 mm

de diamètre avec un entrefer de 4 mm. Nous avons couplé l’acquisition des matrices de

Mueller sur une succession de paliers d’une durée de 90 s et de cisaillement croissant de

0, 3s−1 à 121s−1. Chacune des images utilisées pour construire la matrice de Mueller est

la moyenne de 50 images.

11.1.3.1 Taille moyenne des objets diffusants

Nous utilisons notre dispositif de transport incohérent de lumière polarisée pour ca-

ractériser la taille moyenne des objets diffusants. Les indices optiques choisis sont 1, 33

(eau) pour la phase suspendante et 1, 52 pour les fibres de sépiolite (Voir http ://euro-

min.w3sites.net/mineraux/SEPIOLITE.html).

Nous avons réalisé la mesure de taille sur les quatre dilutions disponibles. La faible

turbidité des échantillons assez peu concentrés rend difficile la mesure. Les longueurs de

transport mesurées sont importantes (environ 3 mm) et sont à la limite de la possibilité

du dispositif. Pour mesurer la taille moyenne des objets diffusants, nous réalisons une

pré-expérience sur l’échantillon statique avec une épaisseur d’environ 10 mm. Suite à l’ac-

quisition de la matrice de Mueller Fig.11.5.a, nous modélisons la décroissance d’intensité

en milieu épais Fig.11.5.b avec le modèle à doubles sources Eq.4.9. Puis la mesure des effets

de polarisation sur l’amplitude (éléments M12, M13, M21 et M31) et sur la valeur moyenne

(élémentsM22 etM33) donne une taille moyenne de sphère équivalente de 230 nm de rayon.

Pour les quatre dilutions, nous avons obtenu quatre longueurs de transport et quatre

tailles semblables. La taille est très élevée comparée à la taille équivalente d’une fibre isolée

(environ 18 nm). Les mesures de SAXS et de transport incohérent de lumière semblent

conclure que les suspensions de sépiolite étudiées sont des agrégats 3D non-rigides de fibres.
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11.1 Comparaison de la diffusion anisotrope avec des mesures de SAXS 2D

Fig. 11.5 Suspension de sépiolite à une concentration de 1% en volume : a) Matrice de Mueller,

b) Analyse de la décroissance radiale d’intensité de l’élément M11 avec le modèle à

double source Eq.4.9 avec lTR = 2, 9 mm et αds = 0, 25 et c) Détermination de la

taille moyenne (230 nm) des objets diffusants, Les simulations de Monte Carlo (MC)

sont des extrapolations pour m ≈ 1, 14 des données de Monte Carlo des graphiques

Fig.7.7.a et Fig.7.7.b

La mise sous cisaillement de la suspension de sépiolite n’affecte pas la décroissance

radiale d’intensité Fig.11.6. Sous cisaillement la taille moyenne des objets diffusant n’est

donc pas modifiée significativement. Il est à noter que la moyenne angulaire de la décrois-

sance radiale n’est pas affectée significativement par la déformation de l’image M11 acquise

sous cisaillement. cela signifie que la longueur de transport reste inchangée.
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Fig. 11.6 Décroissances radiales d’intensité de l’élément M11 pour différents cisaillements de

la suspension de sépiolite à une concentration de 0, 5% en volume

11.1.3.2 Matrice de Mueller d’objets anisotrope présentant une orientation

privilégiée

La mise sous écoulement de l’échantillon de sépiolite conduit à différentes modifications

de la matrice de Mueller rétrodiffusée. La Fig.11.7 présente la matrice de Mueller de la

solution de sépiolite à une concentration de 1% en volume sous un cisaillement constant

de 120s−1. Des modifications entre cette matrice sous écoulement (Fig.11.7) et la matrice

statique (Fig.11.5.a) sont visibles sur différents éléments.

Nous distinguons deux types de changement :

– Une modification des effets de polarisation est principalement observée sur les élé-

mentsM14 etM41 s’apparentant à un développement de biréfringence sous-cisaillement.

Nous utilisons alors le protocole de caractérisation de la biréfringence δ développé

dans le chapitre précédent. La mesure de biréfringence est valide pour un ratio d’am-

plitude de M13/M12 (Fig.11.8.a) proche de 1. Dans cette étude, nous sommes donc

en limite de validité de la technique. La mesure de la biréfringence δ (Fig.11.8.c)

est issue de la relation de l’Eq.11.1 calculée avec le ratio M14/M12 (Fig.11.8.b).

L’accroissement du cisaillement induit une modification croissante des effets de po-

larisation sur l’élément M14 correspondant à un accroissement de la biréfringence.

Les quatre derniers points de mesure (pour un cisaillement supérieur à 5 s−1) sont

non représentatifs car ils sont hors du domaine de validité de la technique.
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Fig. 11.7 Matrice de Mueller de la suspension de sépiolite à une concentration de 0, 5% en

volume sous un cisaillement de 120s−1

δ = 1, 45M41 (lTR) /M21 (lTR)
λ

2πNm

1

lTR
(11.1)

– Nous visualisons par ailleurs une modification du transport scalaire de lumière inco-

hérente non-polarisée de l’élément M11. Une orientation collective des objets induit

donc une anisotropie de la tâche de rétrodiffusion de la lumière incohérente non-

polarisée. Les photons quittant le milieu diffusant gardent en mémoire l’anisotropie

de dispersion. La suite des travaux présentés sera consacrée principalement à l’étude

de ce transport anisotrope de lumière non-polarisée.

11.1.3.3 Transport anisotrope de lumière non-polarisée

L’étude du transport anisotrope de lumière correspond au transport d’énergie de la

lumière non-polarisée représenté par l’élément M11 de la matrice de Mueller.

Avant d’étudier l’anisotropie de la suspension de Sépiolite, nous avons effectué un pe-

tit test expérimentale de diffusion sur des fibres optiques. Nous avons positionné un petit

tas de fibres sur le dispositif puis nous avons fait l’acquisition d’une matrice de Muel-

ler. La Fig.11.9.a représente le transport anisotrope (Élément M11) des fibres en position

verticale. L’image de diffusion est horizontale, elle est donc perpendiculaire à la direction

d’orientation des fibres.
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Fig. 11.8 Biréfringence de la suspension de sépiolite à une concentration de 1% en volume

sous un cisaillement. a) amplitude relative de l’élément M13 et de l’élément M12 en

lTR/2, b) amplitude relative de l’élément M14 et de l’élément M12 en lTR/2 et c)

biréfringence δ calculée par l’expression Eq.10.6. Les mesures dans la zone grisée ne

sont par représentatives.

Le transport anisotrope de lumière incohérente non-polarisée est donc prédominent

dans l’axe perpendiculaire à l’axe d’orientation privilégié des objets diffusants. Ceci est

également le cas pour les les techniques de dispersion aux petits angles de rayons X (SAXS).

La Fig.11.9.b représente l’image de diffusion pour une solution de sépiolite à 1% en

volume dans une solution polymère de PEO à 4%. L’orientation de la tache de diffusion

suivant l’axe de vorticité correspond à une orientation des objets diffusants perpendiculaire

à cet axe, c’est à dire le long de l’axe des vitesses, comme observé lors des expériences de

SAXS.

11.1.4 Confrontation des deux techniques

11.1.4.1 Images de dispersion et de diffusion

Les deux techniques montrent une bonne similitude dans leurs images de dispersion

(SAXS) et de diffusion (lumière). Nous visualisons dans la Fig.11.10 la bonne confrontation
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11.1 Comparaison de la diffusion anisotrope avec des mesures de SAXS 2D

Fig. 11.9 a) Éléments M11 de la matrice de Mueller de fibres optiques verticales. b) Images

de diffusion de lumière (Élément M11) de la solution PEO 4% et Sépiolite 1% en

volume à 121 s−1

qualitative de l’anisotropie des images sous cisaillement.

Fig. 11.10 Confrontation des images de dispersion de SAXS et de diffusion de lumière de la

solution PEO 4% et Sépiolite 1%

Les deux techniques présentent une similitude sur le temps d’intégration d’environs

10 ms. Les volumes échantillonnés ont également un d’ordre de grandeur identique. Dans

le cas des mesures de SAXS, le volume scanné par le faisceau laser collimaté de diamètre

0, 3 mm dans l’entrefer de 1 mm est 0, 07 mm3. Dans la technique de transport incohérent

de lumière, le volume sondé est une demi-sphère d’environ 1 mm de rayon soit 1 mm3.

En conclusion, les deux techniques d’acquisition sont à la fois une moyenne temporelle et

spatiale de l’orientation. En SAXS c’est l’orientation moyenne d’un objet qui est observée.

En revanche, le transport anisotrope de lumière incohérente non-polarisée correspond à

l’orientation collective moyenne de l’ensemble des objets diffusants.

DILLET Jérôme 199
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11.1.4.2 Paramètre d’anisotropie

11.1.4.3 Définition du paramètre d’anisotropie Pl

Dans la première partie de la thèse nous avons donné les deux paramètres P2 (Eq.2.2)

et A2 (Eq.2.3) utilisés pour définir l’anisotropie des images de diffraction. Dans nos études

nous avons choisi une méthode d’analyse légèrement différente. À une position radiale, nous

cherchons le maximum et le minimum d’intensité de la variation angulaire pour définir le

paramètre d’anisotropie Pl Eq.11.2 décrit sur la Fig.11.11.

Pl =
Demi-amplitude

Moyenne
=
IMax − IMin

IMax + IMin
=
B

A
(11.2)

Fig. 11.11 Détermination du paramètre d’anisotropie Pl = B/A

Une image anisotrope de dispersion de SAXS ou de diffusion multiple de lumière peut-

être assimilée en première approche à une ellipse. Nous avons réalisé une comparaison des

trois paramètres A2, P2 et Pl dans cette approximation. La Fig.11.12 montre les variations

des paramètres entre eux. Nous observons dans le domaine qui nous intéresse de faible

déformation (A2 < 0, 5) une bonne linéarité des paramètres P2 = 0, 9 A2 et Pl = 2 A2.

Le paramètre Pl peut donc être utilisé pour caractériser l’anisotropie d’une image.
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Fig. 11.12 Comparaison des paramètres d’anisotropie en approximation elliptique des taches

anisotropes : a) P2 en fonction de A2, b) Pl en fonction de A2. c) Morphologie de

la tache de diffusion pour différents paramètres A2.

11.1.4.4 Mesure de SAXS

Nous avons à notre disposition six images de dispersion de SAXS en position radiale

d’une suspension de sépiolite concentrée à 0, 5% pour différents cisaillements appliqués

entre 1 s−1 et 1 000 s−1. Pour chacune d’elles nous avons calculé le paramètre d’anisotropie

Pl en fonction du vecteur d’onde q. On observe que le paramètre est quasiment constant

en fonction de la distance au centre de l’image, Fig.11.13. Nous retenons comme valeur

caractéristique Pl la moyenne entre les positions radiales de 0, 052 nm−1 et 0, 156 nm−1.

Les données indiquées sont données dans la Fig.11.15

11.1.4.5 Mesure de transport incohérent de lumière

Sur le même principe que l’analyse précédente, nous avons observé l’évolution radiale

du paramètre Pl pour le transport incohérent en fonction du cisaillement. Excepté le centre

de la tache (Impact du laser), l’anisotropie de la tache de diffusion (Fig.11.14) est semble-t-

il constant. Nous retenons la valeur moyenne des paramètres Pl compris entre les positions

radiales ρ = 1 mm et ρ = 2 mm. En dehors de cette zone (ρ ≥ 2 mm), les réflexions,
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Fig. 11.13 Variations radiales du paramètre d’anisotropie Pl en SAXS sur la solution de sépiolite

concentrée à 0, 5%

le faisceau montant du laser et les faibles niveaux d’intensité perturbent beaucoup les

mesures d’anisotropie.

Fig. 11.14 Variations radiales du paramètre d’anisotropie Pl en transport incohérent de lumière

sur la solution de sépiolite concentrée à 0, 5%

11.1.4.6 Comparaison des anisotropies mesurées

La Fig.11.15.a récapitule les paramètres d’anisotropie mesurés.
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11.1 Comparaison de la diffusion anisotrope avec des mesures de SAXS 2D

Fig. 11.15 Confrontation des paramètres d’anisotropie de la solution PEO 4% et Sépiolite

0, 5%. a) Données originales et b) Correction des données de SAXS avec un facteur

multiplicatif de 2, 7 et données de biréfringence sur l’axe de droite

Les deux techniques quantifient de façon comparable l’augmentation de l’orientation

moyenne des fibres de sépiolite le long de l’axe des vitesses en fonction du cisaillement.

Un facteur de proportionnalité de 2, 7 (Fig.11.15.b) est nécessaire pour faire le lien entre

le régime de diffraction des rayons X et le domaine de diffusion de Mie du transport

incohérent de lumière (535 nm). Une explication possible à ce facteur de proportionnalité

porte sur les sections efficaces de dispersion. Nous pouvons penser que l’intensité dispersée

est proportionnelle à la section efficace. La section efficace de dispersion est une fonction

du paramètre de taille x = 2πNma/λ, soit du ratio a/λ. En régime de diffraction, la surface

de dispersion d’une sphère de rayon a correspond à la surface projetée dans la direction

du faisceau soit πa2. En régime de Mie, la section efficace est calculée avec la théorie de

Mie présentée dans le chap.3. La Fig.11.16 donne le ratio des sections efficaces, un facteur

cohérent de 3 est trouvé pour la taille moyenne mesurée de 230 nm. La validation de ce

principe nécessiterait des expérimentations (SAXS et transport incohérent de lumière) sur

des objets anisotropes de tailles variées. Il est à noter que si les objets avaient une taille

de moyenne de 1 µm, l’anisotropie observée en transport incohérent de lumière serait à

priori plus importante que l’anisotropie mesurée en SAXS (facteur multiplicatif de 3).

Par ailleurs, il existe un parallèle entre le transport stationnaire de lumière non-

polarisée (Élément M11, paramètre Pl) et la biréfringence (Élément M14, δ), comme ob-

servé sur la Fig.11.15.b. Rappelons que les quatre derniers points de mesure de la biréfrin-

gence aux cisaillement les plus élevés sont non significatifs.
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Fig. 11.16 Ratio entre la section efficace de diffraction et la section efficace de Mie (m =

1, 52/1, 33 ≈ 1.14 et λ = 635 nm)

11.1.4.7 Étude en concentration des suspensions de sépiolite

Les expérimentations sur les différentes concentrations de sépiolite réalisées par Frédéric

Pignon (Fig.11.17.a) montrent une uniformité du paramètre d’anisotropie P2 quelle que

soit la concentration. Le cisaillement provoque un accroissement identique indépendant de

la concentration en sépiolite dans la gamme 0, 5% < ϕv < 2%.

Nous retrouvons cette même propriété sur les expérimentations de transport incohérent

de lumière non-polarisée, Fig.11.17.b. Les deux techniques ont une très bonne cohérence

entres-elles. Elles montrent l’orientation moyenne des fibres de sépiolite dans l’axe des vi-

tesses et elle quantifie identiquement l’anisotropie du milieu en fonction du cisaillement et

de la concentration.
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Fig. 11.17 Paramètres d’anisotropie à différentes concentrations a) SAXS, paramètre P2 (Gra-

phique de Frédéric Pignon) et b) Transport incohérent de lumière, paramètre Pl.

11.2 Transport scalaire de lumière par une suspension de

bâtonnets de verre

11.2.1 Les suspensions de bâtonnets

11.2.1.1 Compositions

La deuxième partie de ce chapitre porte sur une étude d’orientation de bâtonnets

de verre de faible anisotropie. Nous disposions de deux échantillons (10 g) de la so-

ciété Nippon Electric Glass Co.. Les bâtonnets sont obtenus par coupe de fils de verre

de diamètre parfaitement monodisperse de D = 6 µm. Ils sont principalement utilisés

comme entretoises d’espace dans des écrans LCD. En raison de leur précision dimen-

sionnelle élevée, ils peuvent être utilisés également dans d’autres applications submicro-

niques diverses. Les caractéristiques des échantillons sont présentées sur le site internet

http ://www.neg.co.jp/epd/elm/e top.htm. Les bâtonnets ont un indice optique de réfrac-

tion Np = 1, 56 et une densité de 2, 57. Nous avons observé au microscope avec un objectif

×20 les deux échantillons nommés SSS Fig.11.18.c et PF60 Fig.11.18.b. Sur chacun des

échantillons nous avons réalisé une distribution des longueurs des bâtonnets sur 200 me-

sures. Nous avons ainsi déterminé une longueur moyenne de L = 13, 8 µm pour l’échan-

tillon SSS et L = 18, 3 µm pour l’échantillon PF60 soit des ratios d’anisotropie respectifs

de r = 2, 3 et r = 3, 05.
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Fig. 11.18 Bâtonnets de verre. a) Distribution de longueur. b) Image microscopique des bâton-

nets PF60 de longueur moyenne 18, 3 µm. c) Image microscopique des bâtonnets

SSS de longueur moyenne 13, 8 µm.

Les bâtonnets sont mis en suspension dans une huile de silicone newtonienne, Rhodorsil

47V1000, de viscosité dynamique élevée µs = 1 Pa.s à 25◦C. La mise en solution des

bâtonnets est réalisée par une agitation manuelle avec une petite spatule métallique. La

solution finale est parfaitement blanche, l’absorption y est négligeable. La densité de l’huile

est de 0, 973 avec un indice optique de réfraction de 1, 403.

(http ://www.stochem.com/searchdb.asp ?searchStr2=&supplier=526&page=13 ).

Nous avons choisi une viscosité importante de l’huile afin de considérer les particules

comme non-browniennes et de minimiser leur sédimentation :

– Le nombre de Peclet Pe représentant le rapport entre les forces hydrodynamiques

et les forces browniennes peut être estimé pour des fibres par la relation Pe =

µsπL
3γ/3kT ln (r) (Chaouche et Koch, 2001) avec k = 1, 38.10−23 J/K la constante

de Boltzmann et T = 298, 25 K la température ambiante. Pour un cisaillement

moyen γ̇ = 1 s−1 les nombres de Peclet des deux types de bâtonnets sont supérieurs

à 1, 5.106 montrant que les bâtonnets de verre ne se sont pas soumis au mouvement

brownien.

– Le nombre de Reynolds local Re autour d’un bâtonnet varie entre 0 (statique) à Re =

dLγ̇maxρ/η ≈ 1.10−5 où ρ ≈ 1 000 kg/m3 est la masse volumique, d = 6 µm est le

diamètre d’un bâtonnet, L = 13, 8 µm est la longueur d’un bâtonnet, η ≈ 1 000 Pa.s

est la viscosité et γ̇max ≈ 100s−1 est le cisaillement maximum. L’écoulement autour

de l’objet est donc laminaire (Re << 1).

– Le temps de sédimentation τs d’une fibre isolée en position verticale sur une distance

égale à sa longueur est donné par τs = 8µL/∆ρgd2 (ln 2r − 0, 72) (Chaouche et
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Koch, 2001) où µ est la viscosité autour de la particule et ∆ρ est la différence entre

les masses volumiques des particules et du fluide suspendant. Si l’on considère la

viscosité comme égale à la viscosité du fluide suspendant (µ = µs), on obtient un

temps de sédimentation d’environ 4 minutes. Or la viscosité locale environnante

d’une fibre en suspension est plus importante en prenant en compte les particules

voisines de la fibre. Par conséquent le temps de sédimentation est plus long. Nous

considérerons donc que sur l’échelle de temps de nos manipulations (Maximum 15

minutes), la sédimentation est non significative.

11.2.1.2 Transport de polarisation

Le transport de lumière polarisée, n’est pas discriminant pour cette étude. Les tailles

moyennes des bâtonnets importantes de 4−5 µm (x ≈ 60)sont hors du domaine de validité

de la technique. Les effets de polarisation (l’amplitude de polarisation) de la matrice de

Mueller sont trop faible (Fig.11.19). Seul le transport scalaire de lumière représenté par

l’élément M11 sera utilisé dans cette étude.

11.2.1.3 Détermination de la fraction volumique

Nous souhaitons réaliser une étude de l’orientation des suspensions en fonction de la

fraction volumique en particules anisotropes. Pour ce faire nous souhaitons réaliser de

nombreuses concentrations entre quelques pourcents et 40%. En raison de la faible quan-

tité de produit disponible, il nous était impossible de préparer tous ces échantillons. Nous

avons donc choisi de faire une solution initiale concentrée. Après chaque expérimentation,

nous récupérerons la quantité maximum de l’échantillon et nous la re-diluons avec un peu

d’huile. Avec cette méthode, il est difficile de connâıtre la concentration volumique réelle.

Pour palier cette difficulté nous avons utilisé l’inversion de Mie sur la longueur de trans-

port lTR. En effet, connaissant à la fois la taille des particules et les indices optiques des

particules et de huile, la seule inconnue est la fraction volumique.

Pour valider cette méthode de détermination de la fraction volumique ϕv à partir de

lTR, nous avons réalisé deux points de mesures sur les deux types de bâtonnets pour deux

concentrations connues (15, 9% et 27, 5%). Nous avons ajusté les décroissances radiales

d’intensité (Fig.11.20.a, Fig.11.20.b, Fig.11.20.d et Fig.11.20.e) des suspensions de bâton-

nets avec le modèle de Haskell Eq.4.7 développé pour des sphères homogènes. Nous avons

calculé la théorie de Mie sur des sphères de volume équivalent pour les longueurs de bâton-

nets mesurées dans la Fig.11.18. Les rayons équivalents sont de 4, 51µm pour les bâtonnets

SSS et de 4, 98µm pour les bâtonnets PF60. Pour ces tailles importantes, il n’est pas utile

de prendre en compte le facteur de structure de la diffusion dépendante.
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Fig. 11.19 Suspension de bâtonnets SSS à une concentration de 22% en volume : a) Matrice

de Mueller, b) Analyse de la décroissance radiale d’intensité de l’élément M11 avec

le modèle de haskell avec lTR = 0, 2 mm et c) Amplitude des effets de polarisation.

Les simulations de Monte Carlo (MC) sont des extrapolations pour m ≈ 1, 114 des

données de Monte Carlo du graphique Fig.7.7.a

Les points expérimentaux sont confrontés avec succès aux valeurs théoriques calculées.

Les particules anisotropes positionnées et orientées aléatoirement peuvent être vues du

point de vue de la diffusion de lumière comme une suspension de particules sphériques. La

mesure expérimentale de la longueur de transport lTR permet donc une mesure indirecte

de la fraction volumique ϕv.
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Fig. 11.20 Validation de la mesure de la fraction volumique par inversion de Mie. Ajustement

des décroissances radiales d’intensité pour les deux points de vérification pour les

bâtonnets SSS (a) et (b) et pour les bâtonnets PF60 (c) et (d). e) Validation, les

courbes de Mie sont calculées avec le paramètre optique m = 1, 114 et un rayon

de particule de 4, 51 µm pour les bâtonnets SSS et de 4, 98 µm pour les bâtonnets

PF60
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11.2.2 Cinétiques temporelles

Nous souhaitons dans un premier temps caractériser l’orientation dans le temps des

bâtonnets soumis à un cisaillement constant. Cette étude de l’orientation sous cisaille-

ment est réalisée en géométrie plan-plan avec un entrefer de 1 mm sur une suspension

de bâtonnets PF60, pour une concentration volumique de 20, 3%. Pour un cisaillement

constant, nous réalisons une mesure de la viscosité avec simultanément une acquisition de

la matrice de Mueller. Les acquisitions sont réalisées avec un intervalle de temps de 10 s

(pour un cisaillement supérieur à 0, 2 s−1) ou de 20 s sur une période pouvant aller jusqu’à

1 000 s. Chacune des images utilisées pour la construction de la matrice de Mueller sont

une moyenne de 20 images. Une épaisseur d’échantillon de 1 mm permet de considérer le

milieu comme épais car les longueurs de transport lTR seront toujours inférieures à 0, 5mm.

Dès les premières expérimentations, nous avons observé une influence de la condi-

tion expérimentale de départ. En effet le positionnement de l’échantillon réalisé par un

abaissement de la géométrie plan induit un écoulement radial qui provoque une première

orientation dans l’échantillon. Pour obtenir un état initial reproductible, nous choisissons

de descendre puis de monter et enfin de redescendre la géométrie.

L’anisotropie de l’image est quantifiée par la mesure du paramètre d’anisotropie P l.

Cette mesure est affectée d’un signe négatif pour une orientation verticale et d’un signe

positif pour une orientation horizontale. La Fig.11.21 présente différentes variations ra-

diales du paramètre d’anisotropie pour la suspension de bâtonnets PF60 (concentration

en volume de 23, 5%) sous un cisaillement constant de 0, 303s−1. La mesure du paramètre

Pl en lTR n’est pas envisageable. Pour les concentrations les plus élevées, la longueur de

transport est trop petite (lTR < 0, 3, Fig.11.20) par rapport au spot laser (75 µm de

rayon). La mesure d’anisotropie est affectée par le faisceau laser. Nous choisissons donc de

mesurer ce paramètre sur la couronne de rayon 2.lTR ± lTR/5, Fig.11.21.

Il est à noter que nous distinguons deux directions d’orientation dans une tache ré-

trodiffusée. Si l’on considère la tache au temps final, le centre de l’image présente une

anisotropie verticale (Pl < 0 pour ρ/lTR ≤ 1) perpendiculaire à l’anisotropie horizontale

prédominante de l’image (Pl > 0 pour ρ/lTR>1).

DILLET Jérôme 210
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Fig. 11.21 Variations radiales du paramètre d’anisotropie Pl de la suspension de bâtonnets

PF60 à une concentration en volume de 20, 3% sous cisaillement. Les lignes verti-

cales en (2 lTR ± lTR/5) montrent le domaine de mesure du paramètre Pl.

L’anisotropie des taches rétrodiffusées étant très faible, nous choisissons une représen-

tation visuelle issue de la différence entre l’image anisotrope (P l 6= 0) et l’image isotrope

associée (Pl = 0), Fig.11.22. Nous conservons une échelle logarithmique signée. L’axe de

déformation de l’image sera donc représenté en couleur rouge. L’orientation moyenne des

bâtonnets est alors donnée par l’axe bleu.

Fig. 11.22 Observation d’une image anisotrope par soustraction de l’image isotrope. Exemple

de l’image à t = 580 s (Pl = 0, 06) de la suspension de bâtonnets PF60 (concentra-

tion en volume de 23, 5%) sous un cisaillement constant de 0, 303 s−1 avec l’image

isotrope à t = 40 s (Pl = 0)

La Fig.11.23.a est un exemple d’expérimentation à un cisaillement de 0, 303s−1. Nous
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observons un axe de déformation de l’image rétrodiffusée verticale suite au positionnement

de la géométrie (t = 0). Dans un second temps, la mise en rotation de la géométrie

(t > 0) induit tout d’abord une disparition de l’anisotropie verticale puis un accroissement

de l’anisotropie dans l’axe horizontal. La réorganisation du système se traduit par un

passage à un état désorganisé (sans orientation privilégiée) à t ≈ 60 s. Il est à noter que le

passage d’une orientation privilégiée à l’autre n’est pas obtenu par une rotation collective

des bâtonnets. En effet, nous avons plutôt une disparition de la population de bâtonnets

orientés initialement par la mise en place de l’échantillon (Fig.11.23.c) et l’apparition d’une

nouvelle population orientée par le champ de cisaillement (Fig.11.23.d). Notons également

que la viscosité augmente légèrement au cours de temps (Fig.11.23.b).

Fig. 11.23 Orientation des bâtonnets PF60 (23, 5% en volume) sous un cisaillement constant

de 0, 303 s−1. Variation dans le temps du paramètre d’anisotropie (a) et de la

viscosité (b). Les images sont des différences d’images de l’élément M11 Fig.11.22.

c) Schéma de la mise en place de l’échantillon par écrasement (écoulement radial)

et d) schéma sous rotation de la géométrie (écoulement tangentiel).

Nous observons donc que les bâtonnets de verre s’orientent toujours perpendiculaire-
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ment à l’axe de cisaillement (axe de vorticité) : lors du positionnement de l’échantillon, les

particules sont orientées tangentiellement par l’écoulement radial (Fig.11.23.c.), puis sous

rotation (cisaillement tangentiel), l’orientation devient radiale (Fig.11.23.d).

Nous avons ensuite réalisé une étude de l’orientation des bâtonnets pour différentes

consignes de cisaillement d’environs 0, 01 s−1 à 10 s−1. Les résultats exposés dans la

Fig.11.24 permettent d’extraire différentes informations. Nous remarquons que l’aniso-

tropie de l’image se développe d’autant plus rapidement que le cisaillement est élevé.

De plus l’anisotropie finale augmente avec le gradient de vitesse. L’évolution tempo-

relle de l’anisotropie se modélise correctement par une équation exponentielle du type

Pl (t) = Pl,∞+(Pl,0 − Pl,∞) exp (−t/τT ) où Pl,0 < 0 est la déformation à l’origine, Pl,∞ > 0

est la déformation finale et τT est un temps caractéristique de transition. La déformation

caractérise l’orientation des bâtonnets dans l’écoulement.

Fig. 11.24 Orientation des bâtonnets PF60 (20, 3%) pour différents gradients de vitesse en

fonction du temps. Les lignes continues sont les modélisations obtenues avec des

corbes exponentielles.

L’écoulement étant généré par un rhéomètre, nous pouvons suivre simultanément l’évo-

lution temporelle de la viscosité de la suspension, Fig.11.23 et Fig.11.25. Les courbes de

viscosité (Fig.11.25) présentent de grandes ressemblances avec les évolutions de l’orienta-

tion des bâtonnets Fig.11.24). L’augmentation du cisaillement se traduit par des variations

de viscosité plus rapide et d’amplitude plus faible. Nous modéliserons les points expéri-

mentaux avec des courbes de type exponentielle : µ/µs = µr
∞ + (µr

0 − µr
∞) exp (−t/τ ′T ) où

µr
0 est la viscosité relative à t = 0, µr

∞ est la viscosité relative finale et τ ′T est le temps
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caractéristique.

Fig. 11.25 Variation de viscosité lors de l’orientation des bâtonnets PF60 (20, 3%) pour dif-

férents gradients de vitesse. Les lignes continues sont les modélisations obtenues

avec les courbes de type exponentiel.

Les temps caractéristiques τT (orientation) et τ ′T (viscosité) sont représentés sur le

graphique de la Fig.11.26. Les temps caractéristiques sont proches et inversement propor-

tionnels au cisaillement. L’étude temporelle permet donc de montrer que l’augmentation

de viscosité s’accompagne d’une augmentation de l’orientation des bâtonnets perpendicu-

lairement à l’axe des vitesses. Il est assez étonnant d’observer que lorsque l’orientation

augmente dans le temps (Fig.11.24), la viscosité augmente (Fig.11.25). Bien qu’une ana-

lyse plus fine de ce phénomène soit nécessaire pour apporter une interprétation rigoureuse,

nous pouvons émettre l’éventualité que le choix de l’orientation des bâtonnets soit plus

lié à leur stabilité hydrodynamique dans l’écoulement qu’à une minimisation de la force

hydrodynamique s’exerçant sur eux. Les articles (Sundararajakumar et Koch, 1997), (Pe-

trich et al., 2000) apportent l’hypothèse que l’augmentation de viscosité peut être due à

des frictions ou à des chocs entre les particules. Cette dissipation supplémentaire serait à

l’origine du caractère rhéoépaississant observé.

Les valeurs asymptotiques en temps de la viscosité et de l’anisotropie pour les diffé-

rents paliers de cisaillement (Fig.11.27) apportent une validation du lien entre ces deux

grandeurs. Une importante modification de la viscosité est associée à une modification im-

portante de l’anisotropie pour des cisaillements compris entre 0, 01 s−1 et 1 s−1. Pour des
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Fig. 11.26 Temps de transition de la suspension de bâtonnets PF60 à 20, 3% issues des ajus-

tements exponentiels des courbes de viscosité (Fig.11.25) et des courbes de défor-

mation (Fig.11.24)

valeurs de cisaillement supérieures à 1 s−1, l’anisotropie et la viscosité restent constantes.

Fig. 11.27 Évolutions de la viscosité et de la déformation finale pour les différents paliers de

cisaillement de la suspension de bâtonnets PF60 à 20, 3%.

11.2.3 Étude en fraction volumique

Nous avons réalisé une étude de l’orientation des bâtonnets en fonction de la frac-

tion volumique. Pour chacune des deux suspensions nous avons réalisé une vingtaine de
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concentrations entre 8% et 34%. Les concentrations ont été déterminées par inversion de

la théorie de Mie sur la mesure de la longueur de transport lTR (Fig.11.20.e). Le protocole

expérimental consiste en un positionnement de l’échantillon entre les deux plans par une

descente, une montée et une descente de la géométrie, puis deux rampes de cisaillement

contrôlées en vitesse : Une montée de 6.10−3 s−1 à 60s −1 et une descente de 60 s−1 à

6.10−3 s−1 découpées en 12 paliers succesifs de 45 s en esprit logarithmique. Nous utilise-

rons dans cette section uniquement les rampes de descente qui correspondent à des états

proches du comportement stationnaire.

Les mesures simultanées de viscosité Fig.11.28 forment des réseaux de courbes non-

séquentes. La concentration et les mesures rhéologiques sont déterminées avec une grande

précision. Nous visualisons une décroissance de la viscosité de la suspension avec d’une

part le cisaillement et avec d’autre part la concentration en bâtonnets.

Fig. 11.28 Viscosité sous cisaillement pour les différentes fractions volumiques de 34% à 8, 4%

pour les bâtonnets SSS (a) et de 31% à 10% pour les bâtonnets PF60 (b).

La Fig.11.29 présente quatre variations parallèles de l’anisotropie de la tache de diffu-

sion et de la viscosité pour différentes concentrations de la suspension de bâtonnets SSS.

Tout comme l’étude cinétique temporelle, la variation d’anisotropie du transport incohé-

rent de lumière non-polarisée semble liée à la variation de la viscosité. L’accroissement du

paramètre d’anisotropie est associé à une diminution de la viscosité pour un accroissement

du cisaillement.

Nous visualisons un état asymptotique de la viscosité et du cisaillement pour un ci-

saillement supérieur à 1 s−1. Les valeurs infinies sont récapitulées dans les deux graphiques
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de la Fig.11.30. L’anisotropie de la tache de diffusion (Pl) mesurée à une distance lTR est

constante et indépendante de la concentration en particules Fig.11.30.a. Ceci indique que

la proportion d’objets orientés est constante. La viscosité relative des suspensions est

proche de celle correspondante à une suspension de sphères dures de volume équivalent

(Fig.11.30.b, modèle de Quemada). Cette observation permet de supposer que la quasi-

totalité des bâtonnets est orientée. Une dissipation supplémentaire due à l’anisotropie des

particules est observée pour des concentrations volumiques supérieures à 20% dans le cas

des bâtonnets les plus anisotropes (PF60, Fig.11.30.a).

Fig. 11.29 Évolution de la viscosité et de la déformation lors de rampes de cisaillement en des-

cente pour quatre concentrations différentes de bâtonnets SSS. a) 34%, b) 25, 7%,

c) 15, 3% et d) 9, 1%.

L’étude de l’orientation des bâtonnets microscopiques a donné des résultats originaux.

Les observations obtenues sur des suspensions concentrées d’objets non-browniens de faible

anisotropie apportent des pistes d’étude dans ce nouveau domaine de recherche. L’observa-
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tion de l’orientation de bâtonnets de faible anisotropie (voisine d’un facteur 2) montre que

la technique fait preuve d’une grande sensibilité à la caractérisation de milieux faiblement

anisotropes.

Fig. 11.30 Déformation (a) et viscosité (b) à cisaillement maximum en fonction de la fraction

volumique pour les bâtonnets SSS et PF60

11.3 Conclusion

Ce chapitre apporte deux applications de la diffusion multiple de lumière sur des ob-

jets anisotropes. L’utilisation du transport stationnaire de lumière est une technique de

caractérisation générale de l’anisotropie d’un milieu turbide.

La technique a été appliquée à des suspensions d’argile de Sépiolite nanométrique

montrant une anisotropie sous cisaillement comparable aux mesures de SAXS (ESRF Gre-

noble). L’étude a montré que les fibres d’argile forment des sphéroı̈des qui sous écoulement

se ”déforment”en ellipsöıdes. Les deux techniques montrent une anisotropie croissante avec

le cisaillement dans l’axe des vitesses. Un facteur de proportionnalité semble séparer les

paramètres d’anisotropie mesurés en SAXS et en transport incohérent de lumière. Nous

émettons l’hypothèse que ce facteur de proportionnalité est lié aux sections efficaces de

dispersion, dépendantes de la longueur d’onde.

La seconde application a porté sur des suspensions de bâtonnets micrométriques de

verre de faible anisotropie. Nous avons montré que le cisaillement induisait une orientation

moyenne privilégiée dans l’axe perpendiculaire à l’axe des vitesses (axe de vorticité). Cette

orientation semble le résultat d’un optimum de stabilité hydrodynamique des bâtonnets.

Nous avons également découvert que la proportion de bâtonnets orientés à fort cisaillement
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est indépendante de leur concentration.

Le transport anisotrope de lumière incohérente donne des observations structurelles

remarquables. Il est un outil de recherche pertinent pour la caractérisation macroscopique

de ce type de système.

Ces deux cas d’étude ont montré que l’anisotropie d’une suspension se répercute d’une

part sur le transport de polarisation assimilé à une biréfringence pour des objets de taille

inférieure ou de l’ordre de la longueur d’onde (élément M14, Sépiolite) et d’autre part

sur le transport scalaire de lumière anisotrope (élément M11, Bâtonnets et Sépiolite). La

méthode la plus simple pour caractériser l’anisotropie d’une suspension consiste donc à

étudier le transport incohérent de lumière anisotrope de l’élément M11 de la matrice de

Mueller.

L’acquisition de l’élément M11 peut se faire simplement par la demi somme de deux

images obtenues à partir de deux polarisations incidentes antagonistes de la lumière sans

sélection de polarisation en sortie. Nous pouvons choisir par exemple le couple générateur

de polarisations linéaires verticale et horizontale ou le couple de polarisations circulaires

droite et gauche. Cette propriété de la matrice de Mueller s’illustre par l’équation Eq.11.3.
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(11.3)

Dans le chapitre suivant qui conclura ce mémoire, nous étudierons la déformation de

globules rouges avec le transport incohérent anisotrope de lumière non-polarisée (élément

M11).
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Chapitre 12

Caractérisation de

l’agrégation et de la

déformation de suspensions

sanguines

Les cellules du vivant sont des suspensions qui diffusent efficacement la lumière visible.

Pour se rendre compte de ce phénomène, il suffit de positionner sa main sur l’extrémité

d’un pointeur laser et d’observer l’important volume illuminé autour de l’impact du laser.

Des équipes de recherche du milieu médicale ont montré que la lumière en géométrie de

rétrodiffusion pouvait être utilisée pour caractériser les tissus vivants (Anderson, 1991)

(Jacques et al., 1992) (Wang et al., 2003) (Stoltz et al., 1981).

Nous proposons dans ce chapitre une étude sur le sang humain. Le sang est une sus-

pension concentrée à environ 45% en volume de globules rouges. Ces globules possèdent

deux propriétés fondamentales pour l’écoulement du sang : leur agrégabilité et leur dé-

formabilité. L’agrégabilité est importante pour l’écoulement dans les artères et surtout

dans les veines de diamètre important, alors que la déformabilité et fondamentale pour

l’écoulement du sang dans les réseaux microcirculatoires dont le diamètre est inférieur à

celui d’un globule. A notre connaissance, il n’existe pas aujourd’hui de technique unique

permettant de mesurer simultanément et indépendamment ces propriétés d’agrégabilité et

de déformabilité des globules rouges dans du sang total.

Nous proposons ici d’utiliser le transport incohérent de lumière isotrope et anisotrope
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sanguines

pour caractériser indépendamment la taille et la déformabilité des globules rouges sous

cisaillement. Ce chapitre expérimental montre une possibilité d’utilisation bio-médiale de

la technique. Au début du chapitre, nous décrirons les suspensions sanguines utilisées. Puis

nous étudierons l’effet de l’agrégation des globules sur le transport incohérent de lumière.

La dernière section portera sur la propriété de déformation et d’orientation des globules

rouges en régime physiologique de concentration.

12.1 Les solutions étudiées

Le sang est un fluide complexe constitué principalement d’un fluide suspendant, le

plasma, et d’une dispersion de globules rouges. Le rôle majeur du sang est de transporter

les molécules indispensables à la vie et notamment l’oxygène. Les propriétés du sang et no-

tamment des globules rouges conditionnent cette fonctionnalité. Les globules rouges sont

des cellules micrométriques en forme de disque biconcave (discoı̈de) d’environs 7 µm de

diamètre et 3 µm d’épaisseur (Fig.12.1). Suivant les individus et le sexe, la concentration

en globules rouges nommée taux d’hématocrite varie entre 40% et 55%. Le taux d’héma-

tocrite se mesure simplement par centrifugation d’un prélèvement dans un microtube. Les

globules rouges sont constitués d’une membrane responsable des propriétés complexes de

déformation et d’agrégation des globules. En modifiant les propriétés de la membrane,

nous pouvons rendre les globules agrégeants, non-agrégeants, sphériques et durcis.

Fig. 12.1 Photographie obtenue par microscopie électronique à balayage de globules rouges

humains. La coloration rouge est ajoutée lors du traitement de la photographie.

Cette étude est réalisée en collaboration avec le laboratoire de Matière et Systèmes

Complexes (MSC) de Paris 7. Ces travaux sont présentés en partie dans la thèse de
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Guillaume Toussaint (Toussaint, 2006) dirigée par Patrice Flaud. Les échantillons ont

été préparés par Guillaume Toussaint à partir d’une poche de sang de 450 ml d’un unique

donneur anonyme sain. La préparation des échantillons débute par un lavage des glo-

bules. Le sang entier est placé dans des tubes de centrifugation pendant 10 minutes à

3000 tours/min. Le surnageant (le plasma) est ôté puis le culot (les globules rouges) est

resuspendu dans une solution tampon ”Phosphate Buffered Saline”. Les opérations de cen-

trifugation et resuspension sont renouvelées à trois reprises pour suspendre les globules

rouges dans une solution tampon saline la plus pure possible. Après ce traitement, nous

obtenons le premier échantillon correspondant à un ”sang non-agrégeant” de ”discoı̈des dé-

formables”. L’ajout de 3% de dextran dans la solution des globules lavés permet de simuler

l’agrégation et d’obtenir l’échantillon nommé ”sang agrégeant”. L’agrégation des globules

sanguins correspond à un empilement des discoı̈des sous la forme de cylindres. Par ailleurs,

nous avons la possibilité de modifier la pression osmotique de la solution saline pour rendre

les globules sphériques et d’obtenir ainsi la suspension ”sphéroı̈des déformables”. De plus,

l’ajout de 0, 05% de glutaraléhyde conduit au durcissement des globules et permet ainsi

d’obtenir des ”sphéröıdes durcis” et des ”discöıdes durcis”. Ces différentes suspensions nous

permettrons d’étudier indépendemment les effets d’agrégation, d’orientation et de défor-

mation des globules rouges en suspensions concentrées (de 30% à 50% en volume).

12.2 Diffusion de la lumière sur les globules

Les globules sont des suspensions micrométriques. Le volume d’un globule est d’envi-

rons 80 µm3 ce qui correspond à une sphère de rayon équivalent de 2, 2 µm et un paramètre

de taille x ≈ 30. Nous avons vu dans la seconde partie de la thèse que le transport de pola-

risation n’était pas discriminant pour des paramètres de taille supérieurs à 10. Cette taille

élevée est confirmée par la matrice de Mueller du sang non-agrégeant sous un écoulement

cisaillé à 200 s−1 (Fig.12.2). Nous observons d’une part que les effets de polarisation sont

extrêmement réduis (non-discriminants) et d’autre part qu’aucun effet de biréfringence

n’est visible sur les éléments M14 et M41.

Nous utiliserons pour cette étude de caractérisation des globules rouges uniquement le

transport incohérent de lumière non-polarisée correspondant à l’élément M11 de la matrice

de Mueller.
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Fig. 12.2 Matrice de Mueller du sang non-agrégeant à 200s−1

L’absorption ne peut être négligée dans le sang ; la coloration rouge en est une consé-

quence. Nous modéliserons donc la décroissance radiale d’intensité (exemple Fig.12.3) avec

le modèle de l’Eq.4.8 qui prend en compte l’absorption. La modélisation permet la mesure

simultanée de la longueur de transport lTR et de la longueur d’absorption la. L’absorption

se traduit par une accentuation de la décroissance d’intensité lorsque l’on séloigne du point

d’impact du laser. La mesure de l’absorption est connue comme étant étroitement liée au

taux d’oxygénation des globules (Ishimaru, 1997).

Avant de réaliser une mesure en espace ”fini” sous cisaillement avec un entrefer de

3 mm, nous effectuons une mesure statique, dans un petit cylindre, en milieu ”semi-infini”

avec une hauteur d’échantillon d’environ 10 mm. La décroissance radiale d’intensité en

épaisseur ”fini”est semblable à la décroissance en milieu ”semi-infini”, malgré une épaisseur

inférieure à dix fois la longueur de transport lTR Fig.12.3. L’absorption prédomine sur le

milieu ”fini”. Le modèle de Haskell avec l’absorption Eq.4.8 reste valide pour des mesures

en entrefer réduit de 3 mm.

Nous rappelons que la longueur de transport en milieu absorbant répond à la relation

1/lTR = 1/ldec + 1/la. Nous utiliserons l’inversion sur la longueur de décorélation avec

la théorie de Mie pour mesurer une taille (Mougel, 2006). Nous considérons que la frac-

tion volumique et les indices optiques de réfraction sont connus. Nous trouvons dans la

littérature un indice optique des globules rouges de 1, 39 soit un paramètre optique de

m = 1, 39/1, 33 = 1, 045 dans la solution tampon d’eau. Par ailleurs, nous mesurons la
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12.2 Diffusion de la lumière sur les globules

Fig. 12.3 Modélisation de la décroissance radiale d’intensité pour l’échantillon de sang non-

agrégeant avec un taux d’hématocrite de 42% en milieu fini (3 mm d’épaisseur) et

en milieu semi-infini (épais, 10 mm d’épaiseur). La courbe ”Modèle” représente le

modèle de Haskell sans absorption (Eq.4.7, lTR = 0, 397 mm) et la courbe ”Modèle

Abs”représente le modèle avec l’absorption (Eq.4.8, lTR = 0, 397mm et la = 14 mm).

concentration en globules rouges de chaque échantillon par centrifugation dans un micro-

tube.

Sur l’exemple de la Fig.12.3 le modèle de Haskell avec absorption, donné par l’Eq.4.8,

est ajusté sur la décroissance radiale d’intensité obtenue pour le sang non-agrégeant à

un taux d’hématocrite de 42%. Par ajustement, nous obtenons une longueur d’absorb-

tion la = 14 mm et une longueur de transport lTR = 0, 397 mm. Nous vérifions ainsi

que la longueur d’absoption est bien supérieure à la longueur de décorélation ldec =

lalTR/ (la − lTR) = 14 ∗ 0, 397/(14 − 0, 397) = 0, 408 mm. Nous pouvons comparer cette

longueur de décorélation à la théorie de Mie avec les paramètres m = 1, 045, a = 2 200 nm

et ϕv = 0, 42. Ce calcul nous donne une valeur de ldec = 0, 406 mm, en excellent accord

avec la valeur déterminée par modélisation.

DILLET Jérôme 225
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12.3 Agrégation

L’étude de la propriété importante d’agrégation est réalisée sur les deux échantillons

dits ”agrégeant” et ”non-agrégeant” avec des taux d’hématocrite respectifs de 39% et de

42%. Nous réalisons pour chacun des échantillons une étude en fonction du cisaillement.

Nous utilisons la géométrie plan-plan de 5 cm de diamètre avec un entrefer de 3 mm. Nous

réalisons des paliers successifs de cisaillement dans un esprit logarithmique (1 s−1, 2 s−1,

5 s−1, 10 s−1, 20 s−1, 50 s−1, 100 s−1, 200 s−1, 500 s−1 et 1 000 s−1) et simultanément

nous réalisons l’acquisition d’une matrice de Mueller.

Les mesures de viscosité, Fig.12.4.a, montrent le caractère rhéofluidiffiant du sang.

Fig. 12.4 a) Viscosités du sang agrégeant et non-agrégeant en fonction du cisaillement. b)

Inversion de Mie sur ldec connaissant à la fois les propriétés optiques (m = 1, 045) et

les fractions volumiques (ϕv = 39%).

La Fig.12.5 présente les différentes images rétrodiffusées de l’élément M11. Sur la sé-

quence d’image du sang non-agrégeant nous observons un transport incohérent de lumière

non-polarisée totalement indépendant du cisaillement. Ceci n’est plus le cas pour le sang

agrégeant, où nous visualisons un accroissement de l’intensité au centre de la tache de

diffusion correspondant à une diminution de la longueur de transport. Les décroissances

radiales sont représentées dans la Fig.12.6. Une parfaite superposition des courbes est

obtenue pour le sang non-agrégeant Fig.12.6.a, confirmant l’indépendance des images ré-

trodiffusées en fonction du cisaillement. L’agrégation du sang agrégeant se traduit par un

faisceau de courbes sur la Fig.12.6.b.
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12.3 Agrégation

Fig. 12.5 Images du transport de lumière non-polarisée (M11) du sang non-agrégeant à 42% (en

haut) et du sang agrégeant à 39% (en bas) et en fonction des différents cisaillements.

Images en fausses couleurs de 1 cm de coté.

Fig. 12.6 Décroissances radiales d’intensité à différents cisaillements de 1 s−1 à 200 s−1 pour

le sang non-agrégeant (a) et le sang agrégeant (b). Le modèle en pointillé corres-

pondent à l’ajustement (Eq.4.8) à 200 s−1 et le modèle en continu à 2 s−1

Les décroissances radiales d’intensité (Fig.12.6) sont modélisées avec l’Eq.4.8. Le pa-

ramètre d’absorption est trouvé constant (la = 14 mm) pour les deux échantillons et

pour l’ensemble des cisaillements. L’absorption est donc indépendante de l’agrégation. Les

longueurs de décorélation obtenues sont représentées dans la Fig.12.7.a. L’augmentation

du cisaillement provoque une diminution de la longueur de décorélation du sang agré-

geant qui converge vers la valeur de la longueur de décorélation obtenue pour le sang

non-agrégeant. Connaissant à la fois les propriétés optiques (m = 1, 045) et les fractions

volumiques (ϕv = 39%), nous utilisons l’inversion de Mie sur la longueur de décorélation
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ldec Fig.12.4.b pour déterminer un rayon d’agrégat équivalent. Nous avons discrétisé le do-

maine de taille [150 nm ; 15 µm] et 100 points et pour chaque point nous avons calulé la

théorie de Mie sans l’apropximation de Percus-Yevich avec pour m = 1, 045 et ϕv = 39%.

Nous considérons alors que les agrégats de globules rouges sont sphériques et compacts.

Aux faibles contraintes, les agrégats du sang agrégeant comptent en moyenne 30 cellules

(Fig.12.7.b). Puis sous l’effet de l’écoulement, la taille des agrégat décrôıt jusqu’à la taille

d’un globule isolé de 2, 2 µm. L’échantillon de sang non-agrégeant est en bon accord avec

la mesure d’un globule.

Fig. 12.7 Variations de la longueur de décorélation (a) et des rayons des agrégats calculés par

inversion de la théorie de Mie (b) en fonction de la contrainte de cisaillement pour

le sang agrégeant et non-agrégeant

L’analyse de la répartition radiale moyennée angulairement d’énergie dans les suspen-

sions de globules rouges fournit donc une information quantitative sur la taille et l’ab-

sorption des diffuseurs. En réalisant des mesures sous cisaillement, nous pouvons déduire

une information d’agrégation illustrée par la taille moyenne des agrégats à faible contrainte.

12.4 Déformation

L’étude de la déformation des globules est réalisée sur les sphéroı̈des et les discöıdes

durcis et non-durcis Tab.12.1. Nous utilisons la même procédure rhéologique que celle dé-

crite précédemment pour l’étude sur l’agrégabilité des globules.

La Fig.12.8 présente l’évolution du transport de lumière non-polarisée (élément M11)
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12.4 Déformation

sur la solution de discöıdes non-durcis. Nous observons une déformation au centre de la

tache croissante avec le cisaillement. Pour une meilleure visualisation de l’anisotropie, nous

soustrayons à l’image observée une image de référence isotrope (prise à un cisaillement de

10 s−1). Les lobes négatifs (bleu) caractérisent l’orientation moyenne des globules sous le

cisaillement. Les globules s’orientent donc dans une direction proche de l’axe des vitesses.

Cette direction semble tourner légèrement quand le cisaillement augmente.

Fig. 12.8 Images (en haut) et différence d’image (en bas) du transport de lumière non-polarisée

(M11) du sang non-agrégeant (discöıdes déformables) en fonction des différents ci-

saillements. Images en fausses couleurs de 1 cm de coté.

Pour les quatre échantillons de globules rouges, nous avons ajusté la décroissance ra-

diale d’intensité du transport scalaire de lumière avec le modèle de Haskell avec absorption

(Eq.4.8). Nous avons obtenu des longueurs de décorélation différentes, Tab.12.1. Ceci s’ex-

pliquer par un volume des globules sphériques supérieur. D’autre part, il semble que l’ajout

du glutaraléhyde pour durcir les globules augmente l’absorption. Nous avons observé di-

rectement à l’œil nu que les deux échantillons de globules durcis étaient d’un rouge sombre

alors que les échantillons de globules non-durcis étaient rouge vif.

Sphéröıdes Discöıdes Discöıdes Sphéröıdes

Échantillon déformables déformables durcis durcis

Ech1 Ech7 Ech2 Ech3

ϕv 0,49 0,42 0,31 0,36

lTR (mm) 0,68 0,37 0,38 0,55

la (mm) 14 14 8 8

Ldec (mm) 0,72 0,408 0,40 0,60

Tab. 12.1 Caractéristiques (fraction volumique ϕv et paramètres de modélisation, Eq.4.8) des

solutions de globules pour l’étude de la déformabilité
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Le développement de l’anisotropie sous cisaillement n’affecte pas de manière signi-

ficative le transport scalaire de lumière moyenné angulairement. Sur la Fig.12.8, nous

observons que la longueur de transport lTR n’est pas modifiée avec l’augmentation de

l’anisotropie. L’intégration angulaire moyenne et par conséquent la longueur de trans-

port lTR sont donc constantes. Ainsi la décroissance moyenne d’intensité radiale dépend

principalement du libre parcours moyen des photons dans un milieu composé de parti-

cules distribuées aléatoirement dans l’espace avec ou sans axe d’orientation privilégié. La

contribution de l’orientation moyenne des objets dans une direction est visible seulement

sur les variations angulaires d’intensité Fig.12.9.

Fig. 12.9 Variations angulaires d’intensité 10 s−1 à 1 000 s−1 pour l’échantillon de discöıdes

durcis (a) et de discöıdes déformables (b).

Pour chacune des images, nous extrayons les variations angulaires d’intensité sur une

couronne de rayon lTR ± lTR/10. La Fig.12.9.a montre pour l’échantillon de discoı̈des dur-

cis, une isotropie des images rérodiffusées sous cisaillement. Ceci n’est plus le cas, pour

l’échantillon de discöıdes déformables Fig.12.9.b. L’intensité angulaire constante à faible

cisaillement devient sinusöıdale avec une amplitude croissante avec le cisaillement.

Sur les variations angulaires d’intensité, nous calculons les paramètres d’anisotropie

Pl. La Fig.12.10 présente l’anisotropie des quatre solutions étudiées. Aucune anisotropie

n’est observée sur les globules durcis. Nous ne visualisons en particulier aucune anisotropie

provoquée par l’orientation des discöıdes durcis Fig.12.9.a et Fig.12.10. Les globules défor-

mables présentent une augmentation du paramètre Pl caractéristique de leur déformation

(élongation). La bonne superposition des paramètres d’anisotropie semble indiquer que la

déformation est contrôlée par la contrainte de cisaillement.
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12.5 Déformation et agrégation simultanées

Fig. 12.10 Paramètre d’anisotropie en fonction de la contrainte pour les différents échantillons

de sang

12.5 Déformation et agrégation simultanées

Pour mettre en évidence la capacité de la technique à déterminer indépendamment

l’agrégation et la déformabilité des globules rouges, nous avons calculé le paramètre d’ani-

sotropie associé à la suspension composée de discoı̈des agrégeants sur la Fig.12.10. Ce pa-

ramètre est mesuré à des positions radiales différentes en fonction du cisaillement du fait

de la modification de la longueur de transport due à l’agrégation des globules (Fig.12.7.b).

Nous notons cependant que les mesures d’anisotropie sont en bon accord avec la suspen-

sion de globules non-agrégeants.

12.6 Conclusion

Dans un sang total (40−50%, discöıdes agrégeants), nous sommes capables de mesurer

simultanément, indépendamment et in situ l’agrégation avec le transport isotrope (lTR)

et la déformation avec le transport anisotrope de lumière (paramètre d’anisotropie P l).

L’agrégation est assimilée par une taille moyenne d’agrégats sous cisaillement. L’accroisse-

ment du cisaillement réduit le taux de cellules agrégées. La déformation est représentée par

le paramètre d’anisotropie Pl. L’augmentation du cisaillement induit une augmentation de

la déformation des globules dans l’axe des vitesses.
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La méthode est une technique puissante pour étudier les propriétés de sang normal

ou pathologique. Nous proposons une méthodologie de caractérisation. Si nous réalisons à

deux contraintes différentes (σ = 0.1 Pa et σ = 10 Pa) les deux mesures de la longueur de

transport lTR et du paramètre de déformation Pl, nous pouvons calculer deux paramètres

caractéristiques :

– Le ratio lTR (0.01 Pa) /lTR (10 Pa) pour définir l’agrégabilité des globules.

– La différence Pl (10 Pa) − Pl (0.01 Pa) pour définir la déformabilité des globules.

La technique est rapide et s’applique sur des prélèvements sans dilution et sans traite-

ment. De plus nous pouvons envisager de diagnostiquer le taux de glucose dans le plasma

(diabète).Avec des simulations de Monte Carlo, nous avons observé que cette activité op-

tique de la phase continue modifie les éléments M14 et M41 de la matrice de Mueller.

Une publication reprenant ces résultats sera prochainement soumise à Phy. Rev. E

(Baravian et al., 2007). Ce chapitre achève la troisième et dernière partie de ce mémoire.
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Conclusion Partie 3

Le transport incohérent de lumière est une technique pertinente pour l’étude des dis-

persions turbides anisotropes. La lumière qui diffuse dans de tels milieux collecte lors de

chaque événement de dispersion des informations sur les propriétés structurelles du milieu.

Ces informations présentes dans la matrice de Mueller rétrodiffusée sont de deux types.

Nous distinguons le transport anisotrope de lumière non-polarisée illustré par l’élément

M11 et la modification des effets de polarisation sur les autres éléments.

Nous avons observé que l’anisotropie d’une dispersion peut être apparentée à une bi-

réfringence du milieu. Deux sources possibles de cette biréfringence ont été étudiées. La

première possibilité est une anisotropie liée à une activité optique de la phase continue.

Cette activité est généralement introduite par de longues châınes de polymères alignées

dans une direction privilégiée. Sur une solution de Xanthane dopée en particules sous écou-

lement cisaillé, nous avons montré que l’élément M41, nul pour une suspension aléatoire

isotrope, présentait de nouveaux effets de polarisation caractéristiques de la biréfringence

de la suspension. L’amplitude angulaire de ces effets mesurée à une distance égale à la

longueur de transport lTR est directement proportionnelle à l’amplitude de biréfringence

δ de la phase continue. La seconde source d’anisotropie pouvant s’apparenter à des effets
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de biréfringence est la présence d’objets diffusants de taille voisine de la longueur d’onde

de la source lumineuse. Cette propriété fut observée sur une suspension d’argile de sépiolite.

La modification du transport d’énergie de l’élément M11 est une méthode plus générale

de caractérisation de particules diffusantes anisotropes de taille quelconque. Par comparai-

son à des mesures de dispersion de rayons X aux petits angles sur la suspension d’argile de

sépiolite, nous avons prouvé que la technique apportait une solution à la détermination de

l’axe d’orientation et à la quantification de l’anisotropie d’une dispersion. Dans le cas de

la suspension de sépiolite de quelques centaines de nanomètres, une anisotropie croissante

sous cisaillement est observée dans l’axe des vitesses.

Pour montrer le caractère général de la technique nous avons développé deux applica-

tions. Dans un premier temps, nous avons étudié l’organisation de suspensions de bâtonnets

micrométriques de verre de faible anisotropie sous cisaillement. Nous avons montré que

le cisaillement induisait une orientation moyenne privilégiée dans l’axe perpendiculaire à

l’axe des vitesses d’une fraction constante de bâtonnet. La seconde application développée

correspond à l’étude de suspensions de globules rouges. En condition réelle, nous avons

mesuré simultanément, indépendamment et in situ l’agrégation et la déformation des glo-

bules sous cisaillement.

L’utilisation du transport de lumière incohérent permet une caractérisation complète

des milieux opaques de nature extrêmement variée. La moyenne angulaire de l’élément

M11 permet la mesure de la longueur de transport lTR. À partir de cette longueur, nous

sommes capables de mesurer une taille moyenne des objets diffusants avec les élémentsM12

et M22, puis une concentration volumique en utilisant l’inversion de Mie sur lTR. Pour des

dispersions anisotropes, le transport incohérent de lumière apporte, en plus, une méthode

unique de mesure de la biréfringence de la phase continue en milieu opaque avec l’élément

M14. Une application prometteuse est la caractérisation de l’anisotropie du milieu due à

une orientation de particules anisotropes. Cette anisotropie observée sur l’élément M11

se traduit par une modification du transport incohérent de lumière non-polarisée. Cette

application a fait l’objet d’un dépôt de brevet d’invention le 22/06/2006 nommé ”Procédé

de caractérisation de l’anisotropie d’un milieu diffusant et dispositif pour la mise en œuvre

d’un tel procédé” (N ◦ d’enregistrement national 06/05600 ; Auteurs : Christophe Bara-

vian, François Caton et Jérôme Dillet)
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Conclusion et perspectives

Ne souhaitant pas répéter les conclusions des trois parties (Page 41, Page 167 et

Page 233), je conclue ce mémoire avec le tableau récapitulatif des techniques de carac-

térisation des suspensions (Page suivante) complété avec notre technique de transport

incohérent de lumière polarisée. Cette technique de diffusion de lumière visible (635 nm)

est une technique assez complète de caractérisation des suspensions. Elle répond à un

besoin important de caractérisation des dispersions concentrées.

En réalisant l’hypothèse que les propriétés optiques m sont connues, elle permet de

caractériser simultanément les milieux denses aléatoires avec :

– Une taille moyenne des suspensions dans le domaine [50 nm ; 5 µm].

– Une fraction volumique en particule pour des concentrations comprise dans l’in-

tervalle [0, 5% ; 50%].

– Une anisotropie de la suspension sous écoulement, mesurable pour de très faibles

anisotropies de particules.

Le transport de lumière polarisée incohérente constitué d’une multitude d’événements

locaux de dispersion reste porteur d’information sur l’événement local calculé par la théorie

de Mie en fonction de la taille des particules et des indices optiques de réfraction.
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Récapitulatif des techniques de caractérisation des suspensions
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La méthode présente de nombreux avantages. La méthode est rapide (1 s), in-situ,

non-intrusive et nécessite une investissement restreint. Elle s’applique sur des échan-

tillons statiques ou en mouvement. Finalement cette technique universelle de caractéri-

sation des milieux diffusants (Émulsions, complexes de polymères, argiles, fibres, cellules

vivantes, . . . ) permet un suivi dynamique du lien entre la microstructure et le compor-

tement macroscopique de suspension en écoulement.

Différentes perspectives à ce travail ont été évoquées lors de la réalisation de la thèse.

Le premier investissement doit porter sur de légères améliorations du dispositif expérimen-

tal. Il est souhaitable de remplacement la diode laser par une nouvelle diode de focalisation

plus performante (spot laser de 30 µm à 15 cm). Ceci étendra la capacité du dispositif

pour l’utilisation du transport de polarisation à la mesure de taille pour des dispersions

de longueurs de transport inférieures à 0, 3 mm. Nous pouvons par ailleurs envisager une

calibration plus fine du dispositif avec pour objectif une réduction de l’erreur de mesure

sur la matrice de Mueller.

Dans la perspective d’une utilisation industrielle, il est important de développer des dis-

positifs adaptés et transportables. Nous pouvons envisager le développement d’une sonde

pour réaliser des mesures in situ et en continu dans des cuves de production. Nous sou-

haitons également adapter le dispositif à des mesures dans une conduite cylindrique. La

détermination d’une taille moyenne des particules d’une suspension à partir de l’amplitude

des effets de polarisation ne nécessite pas l’acquisition complète de la matrice de Mueller.

Seul deux états de polarisation antagonistes de la source incidente et d’analyse sont in-

dispensables. Nous pouvons donc envisager des dispositifs munis d’un générateur et d’un

analyseur tous deux composés d’un polariseur linéaire et d’une lame à cristaux liquides.

Pour la société Firmenich, nous avons développé un premier dispositif industriel d’ac-

quisition de la matrice de Mueller muni d’une cellule d’écoulement alimentée par une

pompe.

Une autre perspective de développement est l’utilisation de la dépendance du transport

incohérent de lumière avec la longueur d’onde de la source lumineuse. La longueur de trans-

port et les effets de polarisation sont directement modifiés via le paramètre x = 2πaNm/λ.

Nous pouvons effectuer des mesures sur l’ensemble du spectre visible avec une source de

lumière blanche ou à quelques longueurs d’onde avec différentes diodes laser. Cette source

d’information permettrait d’augmenter la précision sur la mesure de la taille moyenne

avec les effets de polarisation et de déterminer le dernier paramètre inconnu (le rapport
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des indices de réfraction). Nous pouvons par ailleurs espérer caractériser la polydispersité

d’une suspension, dans une gamme restreinte de taille, en utilisant la partie arrière de et

la fonction de phase (p (π)) à travers le paramètre α du modèle à double sources.

D’un point de vue théorique, il semble important de résoudre le transfert radiatif d’une

onde sur des particules anisotropes (ellipsoı̈des) distribuées aléatoirement dans l’espace et

présentant un axe d’orientation privilégié. Cette modélisation du transport anisotrope de

lumière non-polarisée et/ou polarisée pourrait permettre de dissocier l’anisotropie d’un

système en termes de ratio d’anisotropie des particules et de pourcentage de particules

orientées. Une thèse (Moumini Nadjim) est actuellement en cours sur cette problématique.

Je termine ce rapport en adressant mes plus grands remerciements à la région Lorraine

et la société Firmenich pour le support financier qu’elles ont pu apporter à la réalisation

de ce travail.
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2.7 Schéma d’images de dispersion de rayon X. . . . . . . . . . . . . . . . . . . 39

3.1 Spectre électromagnétique . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
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3.3 Champ électrique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 États de polarisation d’une OEM et formalisme de Lénard-Jones . . . . . . 49
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20% pour trois classes de tailles de particule (m = 1.1) a) Petites particule

en approximation de Rayleigh , b) Particules moyennes x = 2 et c) Grosses

particules x = 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.11 Influence du facteur de structure, en fonction de la concentration pour trois

classes de tailles de particule : Rayleigh, x = 2 et x = 20, (a) sur le fac-

teur d’anisotropie optique, (b) la section efficace de diffusion et (c) le ratio
Cscat,PK(1−gPY )
Cscat,Mie(1−gMie) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1 Principe de mesure du transport de polarisation . . . . . . . . . . . . . . . . 76

5.2 Image en fausse couleur de 5 mm de coté obtenue pour une polarisation
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5.5 Schéma du dispositif expérimental avec D.L. : Diode Laser ; O. : Optique ;
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linéaire vertical et R. : Retardeur à cristaux liquide . . . . . . . . . . . . . . 84

5.9 Schéma de l’analyseur avec O. : Optique ; L. : Polariseur linéaire ; R. : Re-
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7.4 Variations radiales d’intensité obtenues (a) et corrigées (b) pour différentes
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et :• Émulsion2 (Concentration 2%, Rayon moyen 220 nm) . . . . . . . . . 143

8.5 Validation de la mesure de taille par analyse des effets de polarisation (a :

Amplitude, b : Moyenne). (• Simulation de Monte Carlo m = 1, 10, × Émul-
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1, 75% et 3%. La ligne continue est une loi puissance donnée par l’équation

η = 13γ̇−0,85 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

10.6 Longueur de transport des solutions de xanthane dopées avec l’émulsion.

• Mesures expérimentales de la longueur de transport. Ligne continue théo-
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11.14Variations radiales du paramètre d’anisotropie Pl en transport incohérent
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11.19Suspension de bâtonnets SSS à une concentration de 22% en volume : a)

Matrice de Mueller, b) Analyse de la décroissance radiale d’intensité de
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(c) et (d). e) Validation, les courbes de Mie sont calculées avec le paramètre
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(Eq.4.8, lTR = 0, 397 mm et la = 14 mm). . . . . . . . . . . . . . . . . . . . 225
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BIBLIOGRAPHIE

M.P. Petrich, D.L. Koch et C. Cohen : An experimental determination of the stressŰ-
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